Consistency levels of small EDOs

From TD Xenharmonic Wiki
Jump to navigation Jump to search

An edo N is consistent with respect to a set of rational numbers s if the patent val mapping of every element of s is the nearest N-edo approximation. It is uniquely consistent if every element of s is mapped to a unique value. If the set s is the q odd limit, we say N is q-limit consistent and q-limit uniquely consistent, respectively. Below is a table of every edo up to 289, to show macrotonal microtonal and commatonal edos. "Consistent" gives the consistency level, and "Distinct" the distinct consistency level.

EDO Consistent Distinct
1 3 1
2 3 1
3 5 3
4 7 1
5 9 3
6 7 3
7 5 3
8 5 3
9 7 5
10 7 3
11 3 3
12 9 5
13 3 3
14 3 3
15 7 5
16 7 5
17 3 3
18 7 5
19 9 5
20 3 3
21 3 3
22 11 5
23 5 5
24 5 5
25 5 5
26 13 5
27 9 7
28 5 5
29 15 5
30 5 5
31 11 7
32 3 3
33 3 3
34 5 5
35 7 7
36 7 7
37 7 7
38 5 5
39 5 5
40 3 3
41 15 9
42 7 7
43 7 7
44 5 5
45 7 7
46 13 9
47 5 5
48 5 5
49 7 7
50 9 7
51 3 3
52 3 3
53 9 9
54 3 3
55 5 5
56 7 7
57 7 7
58 17 11
59 7 7
60 9 9
61 5 5
62 7 7
63 7 7
64 3 3
65 5 5
66 3 3
67 3 3
68 9 9
69 5 5
70 9 9
71 5 5
72 17 11
73 7 7
74 5 5
75 5 5
76 7 7
77 9 9
78 7 7
79 5 5
80 19 11
81 7 7
82 9 9
83 7 7
84 9 9
85 3 3
86 3 3
87 15 13
88 7 7
89 11 11
90 7 7
91 9 9
92 5 5
93 7 7
94 23 13
95 7 7
96 5 5
97 5 5
98 3 3
99 9 9
100 5 5
101 3 3
102 5 5
103 7 7
104 3 3
105 3 3
106 5 5
107 3 3
108 7 7
109 7 7
110 5 5
111 21 15
112 3 3
113 13 13
114 7 7
115 7 7
116 5 5
117 3 3
118 11 11
119 3 3
120 3 3
121 19 15
122 7 7
123 5 5
124 5 5
125 9 9
126 7 7
127 5 5
128 7 7
129 3 3
130 15 15
131 3 3
132 5 5
133 5 5
134 7 7
135 7 7
136 7 7
137 5 5
138 3 3
139 3 3
140 9 9
141 5 5
142 9 9
143 5 5
144 11 11
145 11 11
146 5 5
147 5 5
148 5 5
149 17 17
150 3 3
151 3 3
152 11 11
153 5 5
154 3 3
155 7 7
156 7 7
157 9 9
158 3 3
159 17 17
160 5 5
161 7 7
162 7 7
163 5 5
164 5 5
165 3 3
166 13 13
167 7 7
168 5 5
169 3 3
170 3 3
171 13 13
172 3 3
173 3 3
174 5 5
175 7 7
176 11 11
177 7 7
178 5 5
179 7 7
180 7 7
181 7 7
182 3 3
183 17 17
184 3 3
185 3 3
186 7 7
187 7 7
188 9 9
189 7 7
190 15 15
191 3 3
192 3 3
193 11 11
194 5 5
195 5 5
196 5 5
197 9 9
198 15 15
199 5 5
200 9 9
201 5 5
202 9 9
203 3 3
204 3 3
205 9 9
206 3 3
207 7 7
208 7 7
209 5 5
210 9 9
211 3 3
212 15 15
213 7 7
214 7 7
215 5 5
216 3 3
217 21 19
218 3 3
219 3 3
220 7 7
221 7 7
222 3 3
223 3 3
224 15 15
225 3 3
226 5 5
227 7 7
228 7 7
229 11 11
230 3 3
231 11 11
232 5 5
233 7 7
234 7 7
235 3 3
236 5 5
237 3 3
238 3 3
239 11 11
240 5 5
241 15 15
242 5 5
243 9 9
244 7 7
245 5 5
246 5 5
247 3 3
248 11 11
249 3 3
250 5 5
251 9 9
252 7 7
253 17 17
254 7 7
255 11 11
256 3 3
257 3 3
258 9 9
259 3 3
260 9 9
261 7 7
262 5 5
263 5 5
264 7 7
265 9 9
266 7 7
267 5 5
268 3 3
269 3 3
270 15 15
271 3 3
272 3 3
273 5 5
274 7 7
275 9 9
276 3 3
277 5 5
278 3 3
279 7 7
280 7 7
281 5 5
282 29 23
283 3 3
284 11 11
285 7 7
286 7 7
287 3 3
288 3 3
289 9 9