115edo

From TD Xenharmonic Wiki
Jump to navigation Jump to search

115edo uses a step size of 10.434782608696 cents, and is a commatonal EDO. It can be thought of as five sets of 23edo. Divisors are {{#rreplace: 115 23 5 1|/(\d+)(\D+)?/|\1\2}}. It is consistent and uniquely consistent in the 7-odd-limit. It is also marvel.

Step Five limit Seven limit Eleven limit Thirteen limit
1 81/80 81/80 81/80 81/80
2 6561/6400 3125/3087 100/99 66/65
3 2048/2025 50/49 45/44 45/44
4 128/125 36/35 36/35 36/35
5 648/625 648/625 33/32 27/26
6 250/243 250/243 80/77 65/63
7 25/24 25/24 25/24 25/24
8 135/128 21/20 21/20 21/20
9 2187/2048 1323/1250 128/121 55/52
10 256/243 200/189 35/33 35/33
11 16/15 15/14 15/14 15/14
12 27/25 27/25 27/25 14/13
13 2187/2000 2187/2000 121/112 99/91
14 625/576 160/147 12/11 12/11
15 1125/1024 35/32 35/32 35/32
16 3456/3125 441/400 11/10 11/10
17 800/729 625/567 135/121 135/121
18 10/9 10/9 10/9 10/9
19 9/8 9/8 9/8 9/8
20 729/640 567/500 121/108 44/39
21 4096/3645 500/441 25/22 25/22
22 256/225 8/7 8/7 8/7
23 144/125 81/70 55/48 15/13
24 729/625 729/625 121/105 121/105
25 125/108 125/108 64/55 52/45
26 75/64 7/6 7/6 7/6
27 1215/1024 147/125 33/28 33/28
28 2560/2187 2000/1701 144/121 13/11
29 32/27 25/21 25/21 25/21
30 6/5 6/5 6/5 6/5
31 243/200 243/200 77/64 63/52
32 3125/2592 875/729 40/33 40/33
33 625/512 60/49 27/22 27/22
34 768/625 49/40 11/9 11/9
35 3888/3125 2187/1750 99/80 81/65
36 100/81 100/81 96/77 26/21
37 5/4 5/4 5/4 5/4
38 81/64 63/50 44/35 44/35
39 6561/5120 3969/3125 121/96 33/26
40 512/405 80/63 14/11 14/11
41 32/25 9/7 9/7 9/7
42 162/125 162/125 77/60 77/60
43 625/486 625/486 100/77 100/77
44 125/96 35/27 35/27 13/10
45 675/512 21/16 21/16 21/16
46 10935/8192 1323/1000 33/25 33/25
47 320/243 250/189 162/121 65/49
48 4/3 4/3 4/3 4/3
49 27/20 27/20 27/20 27/20
50 2187/1600 1701/1250 121/90 88/65
51 3125/2304 200/147 15/11 15/11
52 512/375 48/35 48/35 48/35
53 864/625 243/175 11/8 11/8
54 1000/729 1000/729 168/121 91/66
55 25/18 25/18 25/18 25/18
56 45/32 7/5 7/5 7/5
57 729/512 567/400 99/70 55/39
58 1024/729 625/441 125/88 78/55
59 64/45 10/7 10/7 10/7
60 36/25 36/25 36/25 36/25
61 729/500 729/500 121/84 121/84
62 625/432 350/243 16/11 13/9
63 375/256 35/24 35/24 35/24
64 4608/3125 147/100 22/15 22/15
65 3200/2187 2500/1701 180/121 65/44
66 40/27 40/27 40/27 40/27
67 3/2 3/2 3/2 3/2
68 243/160 189/125 121/81 98/65
69 15625/10368 2000/1323 50/33 50/33
70 1024/675 32/21 32/21 32/21
71 192/125 49/32 49/32 20/13
72 972/625 972/625 77/50 77/50
73 125/81 125/81 120/77 65/42
74 25/16 14/9 14/9 14/9
75 405/256 63/40 11/7 11/7
76 6561/4096 3969/2500 192/121 52/33
77 128/81 100/63 35/22 35/22
78 8/5 8/5 8/5 8/5
79 81/50 81/50 77/48 21/13
80 3125/1944 3125/1944 121/75 121/75
81 625/384 80/49 18/11 13/8
82 1024/625 49/30 44/27 44/27
83 5184/3125 1029/625 33/20 33/20
84 400/243 400/243 128/77 91/55
85 5/3 5/3 5/3 5/3
86 27/16 27/16 27/16 27/16
87 2187/1280 1701/1000 121/72 22/13
88 2048/1215 250/147 56/33 56/33
89 128/75 12/7 12/7 12/7
90 216/125 216/125 55/32 45/26
91 1250/729 1250/729 121/70 121/70
92 125/72 125/72 96/55 26/15
93 225/128 7/4 7/4 7/4
94 3645/2048 441/250 44/25 44/25
95 1280/729 1000/567 175/99 39/22
96 16/9 16/9 16/9 16/9
97 9/5 9/5 9/5 9/5
98 729/400 729/400 231/128 165/91
99 3125/1728 625/343 20/11 20/11
100 1875/1024 49/27 49/27 49/27
101 1152/625 147/80 11/6 11/6
102 4000/2187 3125/1701 224/121 182/99
103 50/27 50/27 50/27 13/7
104 15/8 15/8 15/8 15/8
105 243/128 189/100 66/35 49/26
106 4096/2187 2500/1323 121/64 99/52
107 256/135 40/21 21/11 21/11
108 48/25 27/14 27/14 25/13
109 243/125 243/125 77/40 77/40
110 625/324 625/324 64/33 52/27
111 125/64 35/18 35/18 35/18
112 2025/1024 49/25 49/25 49/25
113 12800/6561 3969/2000 99/50 65/33
114 160/81 125/63 125/63 125/63
115 2/1 2/1 2/1 2/1