116edo

From TD Xenharmonic Wiki
Jump to navigation Jump to search

116edo uses a step size of 10.344827586207 cents, and is a commatonal EDO. It can be thought of as four sets of 29edo. Divisors are {{#rreplace: 116 58 29 4 2 1|/(\d+)(\D+)?/|\1\2}}. It is consistent in the 5-odd-limit. It is also marvel.

Step Five limit Seven limit Eleven limit Thirteen limit
1 3125/3072 245/243 99/98 99/98
2 2048/2025 50/49 50/49 50/49
3 81/80 81/80 81/80 66/65
4 16875/16384 49/48 45/44 40/39
5 128/125 36/35 33/32 33/32
6 25/24 25/24 25/24 25/24
7 78125/73728 256/245 22/21 22/21
8 256/243 200/189 126/121 104/99
9 135/128 21/20 21/20 21/20
10 16384/15625 343/324 35/33 35/33
11 16/15 15/14 15/14 15/14
12 625/576 175/162 121/112 121/112
13 32768/30375 160/147 88/81 13/12
14 27/25 27/25 27/25 27/25
15 1125/1024 35/32 12/11 12/11
16 2048/1875 54/49 11/10 11/10
17 10/9 10/9 10/9 10/9
18 15625/13824 384/343 55/49 39/35
19 3456/3125 500/441 49/44 49/44
20 9/8 9/8 9/8 9/8
21 9375/8192 245/216 25/22 25/22
22 256/225 8/7 8/7 8/7
23 125/108 125/108 121/105 121/105
24 ? 147/128 63/55 15/13
25 144/125 81/70 81/70 81/70
26 75/64 7/6 7/6 7/6
27 32768/28125 288/245 33/28 33/28
28 32/27 25/21 25/21 13/11
29 1215/1024 147/125 147/125 77/65
30 18432/15625 343/288 105/88 65/54
31 6/5 6/5 6/5 6/5
32 625/512 98/81 40/33 40/33
33 4096/3375 60/49 11/9 11/9
34 100/81 100/81 100/81 100/81
35 10125/8192 49/40 27/22 16/13
36 768/625 216/175 99/80 99/80
37 5/4 5/4 5/4 5/4
38 15625/12288 432/343 44/35 44/35
39 512/405 80/63 80/63 49/39
40 81/64 63/50 63/50 33/26
41 84375/65536 245/192 14/11 14/11
42 32/25 9/7 9/7 9/7
43 125/96 35/27 35/27 35/27
44 65536/50625 64/49 55/42 13/10
45 162/125 162/125 162/125 130/99
46 675/512 21/16 21/16 21/16
47 4096/3125 324/245 33/25 33/25
48 4/3 4/3 4/3 4/3
49 3125/2304 875/648 66/49 66/49
50 8192/6075 200/147 110/81 35/26
51 27/20 27/20 27/20 27/20
52 5625/4096 49/36 15/11 15/11
53 512/375 48/35 11/8 11/8
54 25/18 25/18 25/18 25/18
55 78125/55296 343/250 88/63 18/13
56 864/625 243/175 168/121 168/121
57 45/32 7/5 7/5 7/5
58 46875/32768 343/243 99/70 99/70
59 64/45 10/7 10/7 10/7
60 625/432 350/243 121/84 121/84
61 ? 343/240 63/44 13/9
62 36/25 36/25 36/25 36/25
63 375/256 35/24 16/11 16/11
64 8192/5625 72/49 22/15 22/15
65 40/27 40/27 40/27 40/27
66 6075/4096 147/100 81/55 52/35
67 4608/3125 729/490 49/33 49/33
68 3/2 3/2 3/2 3/2
69 3125/2048 245/162 50/33 50/33
70 1024/675 32/21 32/21 32/21
71 125/81 125/81 125/81 99/65
72 50625/32768 49/32 49/32 20/13
73 192/125 54/35 54/35 54/35
74 25/16 14/9 14/9 14/9
75 78125/49152 384/245 11/7 11/7
76 128/81 100/63 100/63 52/33
77 405/256 63/40 63/40 63/40
78 24576/15625 343/216 35/22 35/22
79 8/5 8/5 8/5 8/5
80 625/384 175/108 121/75 121/75
81 16384/10125 80/49 44/27 13/8
82 81/50 81/50 81/50 81/50
83 3375/2048 49/30 18/11 18/11
84 1024/625 81/49 33/20 33/20
85 5/3 5/3 5/3 5/3
86 15625/9216 576/343 121/72 108/65
87 2048/1215 250/147 147/88 91/54
88 27/16 27/16 27/16 22/13
89 28125/16384 245/144 56/33 56/33
90 128/75 12/7 12/7 12/7
91 125/72 125/72 121/70 121/70
92 ? 256/147 110/63 26/15
93 216/125 216/125 210/121 210/121
94 225/128 7/4 7/4 7/4
95 16384/9375 432/245 44/25 44/25
96 16/9 16/9 16/9 16/9
97 3125/1728 441/250 88/49 88/49
98 27648/15625 343/192 98/55 65/36
99 9/5 9/5 9/5 9/5
100 1875/1024 49/27 20/11 20/11
101 2048/1125 64/35 11/6 11/6
102 50/27 50/27 50/27 50/27
103 30375/16384 147/80 81/44 13/7
104 1152/625 324/175 224/121 121/65
105 15/8 15/8 15/8 15/8
106 15625/8192 648/343 66/35 66/35
107 256/135 40/21 40/21 40/21
108 243/128 189/100 121/63 99/52
109 ? 245/128 21/11 21/11
110 48/25 27/14 27/14 27/14
111 125/64 35/18 35/18 35/18
112 32768/16875 96/49 55/28 39/20
113 160/81 125/63 125/63 65/33
114 2025/1024 49/25 49/25 49/25
115 6144/3125 486/245 99/50 99/50
116 2/1 2/1 2/1 2/1