123edo

From TD Xenharmonic Wiki
Jump to navigation Jump to search

123edo uses a step size of 9.7560975609756 cents, and is a commatonal EDO. It can be thought of as three sets of 41edo. Divisors are {{#rreplace: 123 41 3 1|/(\d+)(\D+)?/|\1\2}}. It is consistent in the 5-odd-limit. It is also starling family.

Step Five limit Seven limit Eleven limit Thirteen limit
1 2048/2025 245/243 176/175 91/90
2 81/80 81/80 56/55 56/55
3 128/125 49/48 49/48 49/48
4 6561/6400 2240/2187 45/44 45/44
5 648/625 36/35 36/35 36/35
6 250/243 28/27 28/27 26/25
7 6561/6250 405/392 80/77 27/26
8 25/24 21/20 21/20 21/20
9 256/243 256/243 22/21 22/21
10 135/128 135/128 35/33 35/33
11 16/15 16/15 16/15 16/15
12 2187/2048 729/686 77/72 77/72
13 27/25 15/14 15/14 14/13
14 2048/1875 49/45 49/45 13/12
15 2187/2000 243/224 12/11 12/11
16 625/576 35/32 35/32 35/32
17 800/729 448/405 11/10 11/10
18 1125/1024 54/49 49/44 49/44
19 10/9 10/9 10/9 10/9
20 4096/3645 1372/1215 352/315 91/81
21 9/8 9/8 9/8 9/8
22 256/225 245/216 55/49 44/39
23 729/640 729/640 25/22 25/22
24 144/125 8/7 8/7 8/7
25 2500/2187 280/243 55/48 52/45
26 729/625 81/70 64/55 15/13
27 125/108 7/6 7/6 7/6
28 2560/2187 1715/1458 88/75 88/75
29 75/64 75/64 75/64 13/11
30 32/27 32/27 32/27 32/27
31 1215/1024 405/343 105/88 105/88
32 6/5 6/5 6/5 6/5
33 4096/3375 98/81 77/64 65/54
34 243/200 135/112 40/33 40/33
35 768/625 49/40 49/40 39/32
36 8000/6561 896/729 11/9 11/9
37 625/512 60/49 60/49 16/13
38 100/81 56/45 56/45 26/21
39 8192/6561 243/196 96/77 81/65
40 5/4 5/4 5/4 5/4
41 512/405 343/270 44/35 44/35
42 81/64 81/64 14/11 14/11
43 32/25 32/25 32/25 32/25
44 6561/5120 1568/1215 77/60 77/60
45 162/125 9/7 9/7 9/7
46 625/486 35/27 35/27 13/10
47 6561/5000 729/560 72/55 72/55
48 125/96 21/16 21/16 21/16
49 320/243 320/243 33/25 33/25
50 675/512 324/245 147/110 117/88
51 4/3 4/3 4/3 4/3
52 8192/6075 980/729 385/288 121/91
53 27/20 27/20 27/20 27/20
54 512/375 49/36 49/36 49/36
55 2187/1600 1215/896 15/11 15/11
56 864/625 48/35 48/35 48/35
57 1000/729 112/81 11/8 11/8
58 4374/3125 135/98 135/98 18/13
59 25/18 7/5 7/5 7/5
60 1024/729 343/243 88/63 88/63
61 45/32 45/32 45/32 45/32
62 64/45 64/45 64/45 55/39
63 729/512 486/343 63/44 63/44
64 36/25 10/7 10/7 10/7
65 3125/2187 196/135 175/121 13/9
66 729/500 81/56 16/11 16/11
67 625/432 35/24 35/24 35/24
68 3200/2187 1792/1215 22/15 22/15
69 375/256 72/49 49/33 49/33
70 40/27 40/27 40/27 40/27
71 6075/4096 729/490 363/245 135/91
72 3/2 3/2 3/2 3/2
73 1024/675 245/162 220/147 91/60
74 243/160 243/160 50/33 50/33
75 192/125 32/21 32/21 32/21
76 10000/6561 1120/729 55/36 55/36
77 972/625 54/35 54/35 20/13
78 125/81 14/9 14/9 14/9
79 10240/6561 1215/784 120/77 81/52
80 25/16 25/16 25/16 25/16
81 128/81 128/81 11/7 11/7
82 405/256 405/256 35/22 35/22
83 8/5 8/5 8/5 8/5
84 6561/4096 392/243 77/48 77/48
85 81/50 45/28 45/28 21/13
86 1024/625 49/30 49/30 13/8
87 6561/4000 729/448 18/11 18/11
88 625/384 80/49 80/49 64/39
89 400/243 224/135 33/20 33/20
90 3375/2048 81/49 81/49 81/49
91 5/3 5/3 5/3 5/3
92 2048/1215 686/405 176/105 91/54
93 27/16 27/16 27/16 27/16
94 128/75 128/75 128/75 22/13
95 2187/1280 2187/1280 75/44 75/44
96 216/125 12/7 12/7 12/7
97 1250/729 140/81 55/32 26/15
98 2187/1250 243/140 96/55 45/26
99 125/72 7/4 7/4 7/4
100 1280/729 1280/729 44/25 44/25
101 225/128 225/128 98/55 39/22
102 16/9 16/9 16/9 16/9
103 3645/2048 1215/686 315/176 143/80
104 9/5 9/5 9/5 9/5
105 2048/1125 49/27 49/27 49/27
106 729/400 405/224 20/11 20/11
107 1152/625 64/35 64/35 64/35
108 4000/2187 448/243 11/6 11/6
109 1875/1024 90/49 90/49 24/13
110 50/27 28/15 28/15 13/7
111 4096/2187 729/392 144/77 121/65
112 15/8 15/8 15/8 15/8
113 256/135 256/135 66/35 66/35
114 243/128 243/128 21/11 21/11
115 48/25 40/21 40/21 40/21
116 12500/6561 784/405 77/40 52/27
117 243/125 27/14 27/14 25/13
118 625/324 35/18 35/18 35/18
119 12800/6561 2187/1120 88/45 88/45
120 125/64 63/32 63/32 63/32
121 160/81 160/81 55/28 55/28
122 2025/1024 486/245 175/88 143/72
123 2/1 2/1 2/1 2/1