176edo

From TD Xenharmonic Wiki
Jump to navigation Jump to search

Template:Infobox ET The 176 equal divisions of the octave (176edo), or the 176(-tone) equal temperament (176tet, 176et) when viewed from a regular temperament perspective, is the equal division of the octave into 176 parts of about 6.82 cents each, a size close to 243/242, the rastma.

Theory[edit]

176edo is consistent to the 11-odd-limit, tempering out 78732/78125 (sensipent comma) and | 41 -20 -4 > (undim comma) in the 5-limit; 6144/6125, 10976/10935, and 50421/50000 in the 7-limit; 441/440, 3388/3375, 6912/6875, 8019/8000, 9801/9800 and 16384/16335 in the 11-limit. Using the patent val, 351/350, 364/363, 2080/2079, 2197/2187, and 4096/4095 in the 13-limit.

It supports the bison temperament and the commatic temperament, and provides the optimal patent val for countermiracle in the 7- and 11-limit, and countermanna, one of the extensions, in the 13-limit.

Prime harmonics[edit]

Template:Primes in edo

Regular temperament properties[edit]

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 | 279 -176 > [[[:Template:Val]]] -0.100 0.100 1.47
2.3.5 78732/78125, | 41 -20 -4 > [[[:Template:Val]]] -0.400 0.432 6.34
2.3.5.7 6144/6125, 10976/10935, 50421/50000 [[[:Template:Val]]] -0.243 0.463 6.79
2.3.5.7.11 441/440, 3388/3375, 6144/6125, 8019/8000 [[[:Template:Val]]] -0.250 0.414 6.08
2.3.5.7.11.13 351/350, 364/363, 441/440, 2197/2187, 3146/3125 [[[:Template:Val]]] -0.123 0.473 6.93

Rank-2 temperaments[edit]

Table of rank-2 temperaments by generator
Periods
per octave
Generator
(reduced)
Cents
(reduced)
Associated
ratio
Temperaments
1 17\176 115.91 77/72 Mercy / countermiracle / counterbenediction / countermanna
1 35\176 238.64 147/128 Tokko
1 65\176 443.18 162/125 Sensipent
1 73\176 497.73 4/3 Gary / cotoneum
1 83\176 565.91 13/9 Tricot / trident
2 23\176 20.45 81/80 Commatic
2 23\176 156.82 35/32 Bison
4 73\176
(15\176)
497.73
(102.27)
4/3
(35/33)
Undim
8 73\176
(7\176)
497.73
(47.73)
4/3
(36/35)
Twilight
8 83\176
(5\176)
565.91
(34.09)
168/121
(55/54)
Octowerck (176f) / octowerckis (176)
11 73\176
(7\176)
497.73
(47.73)
4/3
(36/35)
Hendecatonic
22 73\176
(1\176)
497.73
(6.82)
4/3
(385/384)
Icosidillic