88edo

From TD Xenharmonic Wiki
Jump to navigation Jump to search

In music, 88 equal temperament is the scale derived by dividing the octave into 88 equally large steps, 13.6363 cents in size. Using two different approximations to the perfect fifth (one of 51 steps and one of 52 steps), it is compatible with both meantone temperament and the particular variety of superpyth temperament(s) supported by 22 equal temperament, respectively. The meantone fifth is 0.0384 cents flatter than that of Lucy Tuning and, thus, audibly indistinguishable from it. It also gives the optimal patent val for the 11-limit mothra and euterpe temperaments.

Step Five limit Seven limit Eleven limit Thirteen limit
1 3125/3072 126/125 121/120 66/65
2 ? 50/49 45/44 45/44
3 ? 36/35 33/32 27/26
4 128/125 128/125 77/75 77/75
5 25/24 25/24 25/24 25/24
6 78125/73728 21/20 21/20 21/20
7 ? 392/375 132/125 132/125
8 16384/15625 15/14 15/14 15/14
9 16/15 16/15 16/15 14/13
10 625/576 375/343 242/225 130/121
11 ? 35/32 12/11 12/11
12 ? 49/45 11/10 11/10
13 2048/1875 125/112 125/112 125/112
14 9/8 9/8 9/8 9/8
15 9375/8192 28/25 28/25 28/25
16 ? 225/196 25/22 25/22
17 ? 8/7 8/7 8/7
18 144/125 144/125 121/105 121/104
19 75/64 75/64 75/64 65/56
20 78125/65536 7/6 7/6 7/6
21 ? 147/125 88/75 77/65
22 18432/15625 25/21 25/21 13/11
23 6/5 6/5 6/5 6/5
24 625/512 448/375 121/100 121/100
25 ? 60/49 27/22 27/22
26 ? 49/40 11/9 11/9
27 768/625 625/504 150/121 150/121
28 5/4 5/4 5/4 5/4
29 15625/12288 56/45 44/35 33/26
30 ? 125/98 125/98 125/98
31 98304/78125 9/7 9/7 9/7
32 32/25 32/25 32/25 32/25
33 125/96 125/96 100/77 100/77
34 ? 21/16 21/16 13/10
35 ? 98/75 33/25 33/25
36 4096/3125 75/56 75/56 65/49
37 4/3 4/3 4/3 4/3
38 3125/2304 168/125 121/90 88/65
39 ? 135/98 15/11 15/11
40 ? 48/35 11/8 11/8
41 512/375 343/250 242/175 242/175
42 25/18 25/18 25/18 25/18
43 46875/32768 7/5 7/5 7/5
44 ? 625/441 125/88 125/88
45 65536/46875 10/7 10/7 10/7
46 36/25 36/25 36/25 36/25
47 375/256 375/256 175/121 175/121
48 ? 35/24 16/11 13/9
49 ? 147/100 22/15 22/15
50 4608/3125 125/84 125/84 65/44
51 3/2 3/2 3/2 3/2
52 3125/2048 112/75 112/75 98/65
53 ? 75/49 50/33 50/33
54 ? 32/21 32/21 20/13
55 192/125 192/125 77/50 77/50
56 25/16 25/16 25/16 25/16
57 78125/49152 14/9 11/7 11/7
58 ? 196/125 196/125 196/125
59 24576/15625 45/28 35/22 35/22
60 8/5 8/5 8/5 8/5
61 625/384 625/384 121/75 121/75
62 ? 80/49 18/11 13/8
63 ? 49/30 33/20 33/20
64 1024/625 375/224 200/121 200/121
65 5/3 5/3 5/3 5/3
66 15625/9216 42/25 42/25 22/13
67 ? 250/147 75/44 75/44
68 ? 12/7 12/7 12/7
69 128/75 128/75 77/45 77/45
70 125/72 125/72 125/72 125/72
71 ? 7/4 7/4 7/4
72 ? 392/225 44/25 44/25
73 16384/9375 25/14 25/14 25/14
74 9/5 9/5 9/5 9/5
75 1875/1024 224/125 224/125 224/125
76 ? 90/49 20/11 20/11
77 ? 49/27 11/6 11/6
78 1152/625 625/336 225/121 121/65
79 15/8 15/8 15/8 13/7
80 15625/8192 28/15 28/15 28/15
81 ? 375/196 125/66 125/66
82 ? 27/14 21/11 21/11
83 48/25 48/25 48/25 48/25
84 125/64 125/64 125/64 125/64
85 ? 35/18 35/18 35/18
86 ? 49/25 49/25 49/25
87 6144/3125 125/63 125/63 65/33
88 2/1 2/1 2/1 2/1