68edo

From TD Xenharmonic Wiki
Jump to navigation Jump to search

The 68 equal temperament, often abbreviated 68-tET, 68-EDO, or 68-ET, is the scale derived by dividing the octave into 68 equally-sized steps. Each step represents a frequency ratio of 17.65 cents; this is half of the step size of 34edo, which does well in the 5-limit but not so well in the 7-limit, and one quarter the size of 17edo, which does well in the 3-limit, but not so well in the 5-limit. The luck continues; 68 is a strong 7-limit system, but does not do as well for in 11-limit; though it's certainly usable for that purpose, it does not represent the 11-limit diamond consistently, yet 136edo is contorted in 11-limit anyway.

As a 7-limit system it tempers out 2048/2025, 245/243, 4000/3969, 15625/15552, 3136/3125, 6144/6125 and 2401/2400. It supports octacot, shrutar, hemiwuerschmidt, hemikleismic, clyde and neptune temperaments, and supplies the optimal patent val for 11-limit hemikleismic. It is a sharp-tending system, with the third, fifth and seventh harmonics all sharp.

Diatonic scales:

Negative semitone: 14 14 -1 14 14 14 -1 (E is sharper than F, and B is sharper than C5)

Superpyth: 12 12 4 12 12 12 4

Flattone: 10 10 9 10 10 10 9

Inverse: 8 8 14 8 8 8 14

Selected just intervals by error[edit]

The following table shows how some prominent just intervals are represented in 68edo (ordered by absolute error).

Interval, complement Error (abs., in cents)
7/5, 10/7 0.159
15/13, 26/15 0.682
18/13, 13/9 1.324
8/7, 7/4 1.762
5/4, 8/5 1.922
6/5, 5/3 2.006
7/6, 12/7 2.165
13/12, 24/13 2.604
4/3, 3/2 3.927
15/14, 28/15 4.087
11/8, 16/11 4.259
13/10, 20/13 4.610
14/13, 13/7 4.769
16/15, 15/8 5.849
10/9, 9/5 5.933
14/11, 11/7 6.021
9/7, 14/9 6.092
11/10, 20/11 6.181
16/13, 13/8 6.531
9/8, 16/9 7.855
12/11, 11/6 8.186
15/11, 22/15 10.108
13/11, 22/13 10.790
11/9, 18/11 12.114

Table of 68edo intervals[edit]

Step Five limit Seven limit Eleven limit Thirteen limit
1 ? 64/63 55/54 55/54
2 81/80 49/48 49/48 40/39
3 ? 28/27 28/27 28/27
4 25/24 25/24 22/21 22/21
5 ? 21/20 21/20 21/20
6 16/15 16/15 16/15 16/15
7 ? 15/14 15/14 14/13
8 27/25 27/25 27/25 13/12
9 ? 35/32 11/10 11/10
10 10/9 10/9 10/9 10/9
11 ? 28/25 28/25 28/25
12 9/8 9/8 9/8 9/8
13 ? 8/7 8/7 8/7
14 125/108 125/108 63/55 15/13
15 ? 7/6 7/6 7/6
16 32/27 32/27 32/27 32/27
17 ? 25/21 25/21 13/11
18 6/5 6/5 6/5 6/5
19 ? 128/105 11/9 11/9
20 100/81 49/40 49/40 16/13
21 ? 56/45 27/22 26/21
22 5/4 5/4 5/4 5/4
23 ? 63/50 63/50 33/26
24 32/25 32/25 14/11 14/11
25 ? 9/7 9/7 9/7
26 125/96 64/49 55/42 13/10
27 ? 21/16 21/16 21/16
28 4/3 4/3 4/3 4/3
29 ? 75/56 66/49 35/26
30 27/20 27/20 27/20 27/20
31 ? 48/35 11/8 11/8
32 25/18 25/18 25/18 18/13
33 ? 7/5 7/5 7/5
34 45/32 45/32 45/32 45/32
35 ? 10/7 10/7 10/7
36 36/25 36/25 36/25 13/9
37 ? 35/24 16/11 16/11
38 40/27 40/27 40/27 40/27
39 ? 112/75 49/33 49/33
40 3/2 3/2 3/2 3/2
41 ? 32/21 32/21 32/21
42 125/81 49/32 49/32 20/13
43 ? 14/9 14/9 14/9
44 25/16 25/16 11/7 11/7
45 ? 63/40 63/40 52/33
46 8/5 8/5 8/5 8/5
47 ? 45/28 44/27 21/13
48 81/50 49/30 49/30 13/8
49 ? 105/64 18/11 18/11
50 5/3 5/3 5/3 5/3
51 ? 42/25 42/25 22/13
52 27/16 27/16 27/16 27/16
53 ? 12/7 12/7 12/7
54 125/72 125/72 110/63 26/15
55 ? 7/4 7/4 7/4
56 16/9 16/9 16/9 16/9
57 ? 25/14 25/14 25/14
58 9/5 9/5 9/5 9/5
59 ? 64/35 11/6 11/6
60 50/27 50/27 50/27 24/13
61 ? 28/15 28/15 13/7
62 15/8 15/8 15/8 15/8
63 ? 40/21 40/21 40/21
64 48/25 48/25 21/11 21/11
65 ? 27/14 27/14 27/14
66 125/64 49/25 49/25 39/20
67 ? 63/32 63/32 63/32
68 2/1 2/1 2/1 2/1