124edo

From TD Xenharmonic Wiki
Jump to navigation Jump to search

124edo uses a step size of 9.6774193548387 cents, and is a commatonal EDO. It can be thought of as four sets of 31edo. Divisors are {{#rreplace: 124 62 31 4 2 1|/(\d+)(\D+)?/|\1\2}}. It is consistent in the 5-odd-limit.

Step Five limit Seven limit Eleven limit Thirteen limit
1 15552/15625 243/245 100/99 91/90
2 ? 64/63 55/54 55/54
3 250/243 49/48 49/48 49/48
4 81/80 50/49 50/49 40/39
5 78732/78125 28/27 28/27 28/27
6 62500/59049 36/35 33/32 33/32
7 25/24 25/24 25/24 25/24
8 648/625 256/245 22/21 22/21
9 ? 21/20 21/20 21/20
10 3125/2916 360/343 35/33 35/33
11 16/15 16/15 16/15 16/15
12 6561/6250 175/162 175/162 117/110
13 ? 15/14 15/14 14/13
14 625/576 49/45 49/45 13/12
15 27/25 27/25 27/25 27/25
16 ? 35/32 12/11 12/11
17 78125/69984 192/175 11/10 11/10
18 10/9 10/9 10/9 10/9
19 2187/2000 54/49 49/44 49/44
20 ? 28/25 28/25 28/25
21 2500/2187 245/216 55/49 44/39
22 9/8 9/8 9/8 9/8
23 17496/15625 280/243 25/22 25/22
24 ? 8/7 8/7 8/7
25 125/108 125/108 63/55 52/45
26 144/125 144/125 140/121 15/13
27 ? 7/6 7/6 7/6
28 15625/13122 81/70 81/70 81/70
29 32/27 32/27 32/27 32/27
30 729/625 288/245 33/28 13/11
31 ? 25/21 25/21 25/21
32 3125/2592 98/81 98/81 65/54
33 6/5 6/5 6/5 6/5
34 59049/50000 175/144 40/33 40/33
35 ? 128/105 11/9 11/9
36 100/81 49/40 49/40 39/32
37 243/200 60/49 60/49 16/13
38 ? 56/45 27/22 26/21
39 25000/19683 216/175 99/80 99/80
40 5/4 5/4 5/4 5/4
41 3888/3125 243/196 44/35 44/35
42 ? 63/50 63/50 63/50
43 625/486 245/192 14/11 14/11
44 32/25 32/25 32/25 32/25
45 19683/15625 35/27 35/27 35/27
46 78125/59049 9/7 9/7 9/7
47 125/96 98/75 98/75 13/10
48 162/125 64/49 55/42 55/42
49 ? 21/16 21/16 21/16
50 15625/11664 450/343 33/25 33/25
51 4/3 4/3 4/3 4/3
52 6561/5000 324/245 121/90 117/88
53 ? 75/56 75/56 35/26
54 1000/729 49/36 49/36 49/36
55 27/20 27/20 27/20 27/20
56 ? 112/81 15/11 15/11
57 ? 48/35 11/8 11/8
58 25/18 25/18 25/18 25/18
59 864/625 135/98 88/63 18/13
60 ? 7/5 7/5 7/5
61 3125/2187 243/175 140/99 55/39
62 45/32 45/32 45/32 45/32
63 4374/3125 343/240 99/70 78/55
64 ? 10/7 10/7 10/7
65 625/432 196/135 63/44 13/9
66 36/25 36/25 36/25 36/25
67 ? 35/24 16/11 16/11
68 78125/52488 81/56 22/15 22/15
69 40/27 40/27 40/27 40/27
70 729/500 72/49 49/33 49/33
71 ? 112/75 81/55 52/35
72 10000/6561 245/162 180/121 135/91
73 3/2 3/2 3/2 3/2
74 23328/15625 343/225 50/33 50/33
75 ? 32/21 32/21 32/21
76 125/81 49/32 49/32 49/32
77 192/125 75/49 75/49 20/13
78 ? 14/9 14/9 14/9
79 31250/19683 54/35 54/35 54/35
80 25/16 25/16 25/16 25/16
81 972/625 343/216 11/7 11/7
82 ? 63/40 63/40 63/40
83 3125/1944 392/243 35/22 35/22
84 8/5 8/5 8/5 8/5
85 19683/12500 175/108 121/75 121/75
86 ? 45/28 44/27 21/13
87 400/243 49/30 49/30 13/8
88 81/50 80/49 80/49 64/39
89 ? 105/64 18/11 18/11
90 78125/46656 288/175 33/20 33/20
91 5/3 5/3 5/3 5/3
92 5184/3125 81/49 81/49 81/49
93 ? 42/25 42/25 42/25
94 1250/729 245/144 56/33 22/13
95 27/16 27/16 27/16 27/16
96 26244/15625 140/81 75/44 75/44
97 ? 12/7 12/7 12/7
98 125/72 125/72 121/70 26/15
99 216/125 216/125 110/63 45/26
100 ? 7/4 7/4 7/4
101 15625/8748 243/140 44/25 44/25
102 16/9 16/9 16/9 16/9
103 2187/1250 343/192 98/55 39/22
104 ? 25/14 25/14 25/14
105 3125/1728 49/27 49/27 49/27
106 9/5 9/5 9/5 9/5
107 ? 175/96 20/11 20/11
108 ? 64/35 11/6 11/6
109 50/27 50/27 50/27 50/27
110 729/400 90/49 90/49 24/13
111 ? 28/15 28/15 13/7
112 12500/6561 324/175 225/121 169/90
113 15/8 15/8 15/8 15/8
114 5832/3125 343/180 66/35 66/35
115 ? 40/21 40/21 40/21
116 625/324 245/128 21/11 21/11
117 48/25 48/25 48/25 25/13
118 59049/31250 35/18 35/18 35/18
119 78125/39366 27/14 27/14 27/14
120 125/64 49/25 49/25 39/20
121 243/125 96/49 55/28 55/28
122 ? 63/32 63/32 63/32
123 15625/7776 490/243 99/50 99/50
124 2/1 2/1 2/1 2/1