55edo

From TD Xenharmonic Wiki
Jump to navigation Jump to search

55 tone equal temperament[edit]

Welcome to 55edo. It is a relatively generic meantone system, utilizing a different 7 than in septimal meantone. It also doesn't temper the 3 and 9 as much as some other meantones. Therefore it may be considered one of the purest, most generic forms of tempered meantone harmony possible. This makes it a wonderful meantone system.

55edo divides the octave into 55 parts of 21.818 cents. It can be used for a meantone tuning, and is close to 1/6 comma meantone (and is almost exactly 10/57 comma meantone.) Telemann suggested it as a theoretical basis for analyzing the intervals of meantone, in which he was followed by Leopold and Wolfgang Mozart. It can also be used for mohajira and liese temperaments.

5-limit commas: 81/80, <31 1 -14|

7-limit commas: 31104/30625 6144/6125 81648/78125 16128/15625 28672/28125 33075/32768 83349/80000 1029/1000 686/675 10976/10935 16807/16384 84035/82944

11-limit commas: 59049/58564 74088/73205 46656/46585 21609/21296 12005/11979 19683/19360 243/242 3087/3025 5488/5445 19683/19250 1944/1925 45927/45056 2835/2816 35721/34375 7056/6875 12544/12375 7203/7040 2401/2376 24057/24010 72171/70000 891/875 176/175 2079/2048 385/384 3234/3125 17248/16875 26411/25600 26411/25920 26411/26244 88209/87808 30976/30625 3267/3200 121/120 81312/78125 41503/40000 41503/40500 35937/35000 2662/2625 42592/42525 83853/81920 9317/9216 65219/62500 43923/43904 14641/14400 14641/14580

13-limit commas: 59535/57122 29400/28561 29568/28561 29645/28561 24576/24167 99225/96668 24500/24167 50421/48334 45927/43940 2268/2197 2240/2197 57624/54925 61875/61516 57024/54925 11264/10985 72765/70304 13475/13182 22869/21970 6776/6591 20736/20449 20480/20449 84035/81796 91125/91091 65536/65065 15309/14872 1890/1859 5600/5577 9604/9295 59049/57967 58320/57967 4374/4225 864/845 512/507 11025/10816 6125/6084 21952/21125 16807/16224 84035/82134 66825/66248 90112/88725 56133/54080 693/676 1540/1521 26411/25350 58806/57967 58080/57967 88209/84500 4356/4225 7744/7605 88935/86528 33275/33124 27951/27040 9317/9126 58564/57967 43923/42250 17496/17303 87808/86515 55296/55055 25515/25168 1575/1573 64827/62920 4802/4719 98415/98098 59049/57200 729/715 144/143 18375/18304 18522/17875 10976/10725 84035/82368 59049/56875 11664/11375 2304/2275 4096/4095 1701/1664 105/104 42336/40625 25088/24375 21609/20800 2401/2340 9604/9477 72171/71344 2673/2600 66/65 352/351 13475/13312 33957/32500 15092/14625 81675/81536 58806/56875 11616/11375 61952/61425 68607/66560 847/832 4235/4212 35937/35672 1331/1300 5324/5265 58564/56875 85293/85184 13377/13310 85293/84700 15288/15125 31213/30976 67392/67375 28431/28160 34944/34375 4459/4400 4459/4455 28431/28000 351/350 79872/78125 66339/65536 51597/50000 637/625 10192/10125 31213/30720 31213/31104 30888/30625 1287/1280 81081/78125 16016/15625 49049/48000 49049/48600 14157/14000 33033/32768 77077/75000 51909/51200 17303/17280 75712/75625 8281/8250 41067/40960 31941/31250 9464/9375 57967/57600 91091/90000 61347/61250 79092/78125

Intervals[edit]

Degrees of 55-EDO Cents value Ratios it approximates
0 0 1/1
1 21.818
2 43.636
3 65.455
4 87.273
5 109.091 14/13, 16/15
6 130.909 15/14
7 152.727 12/11, 11/10, 13/12
8 174.545
9 196.364 9/8, 10/9
10 218.182
11 240.000 8/7, 15/13
12 261.818 7/6
13 283.636
14 305.455 6/5, 13/11
15 327.273
16 349.091 11/9, 16/13
17 370.909
18 392.727 5/4
19 414.545 14/11
20 436.364 9/7
21 458.182 13/10
22 480.000
23 501.818 4/3
24 523.636
25 545.455 11/8, 18/13, 15/11
26 567.273 7/5
27 589.091
28 610.909
29 632.727 10/7
30 654.545 16/11, 13/9, 22/15
31 676.364
32 698.182 3/2
33 720.000
34 741.818 20/13
35 763.636 14/9
36 785.455 11/7
37 807.273 8/5
38 829.091
39 850.909 18/11, 13/8
40 872.727
41 894.545 5/3, 22/13
42 916.364
43 938.182 12/7
44 960.000 7/4, 26/15
45 981.818
46 1003.636 16/9, 9/5
47 1025.455
48 1047.273 11/6, 20/11, 24/13
49 1069.091 28/15
50 1090.909 13/7, 15/8
51 1112.727
52 1134.545
53 1156.364
54 1178.182
55 1200.000 2/1

Selected just intervals by error[edit]

The following table shows how some prominent just intervals are represented in 55edo (ordered by absolute error).

Interval, complement Error (abs., in cents)
9/7, 14/9 1.280
11/9, 18/11 1.683
12/11, 11/6 2.090
16/15, 15/8 2.640
14/11, 11/7 2.963
4/3, 3/2 3.773
13/10, 20/13 3.968
7/6, 12/7 5.053
11/8, 16/11 5.863
5/4, 8/5 6.414
9/8, 16/9 7.546
15/13, 26/15 7.741
15/11, 22/15 8.504
8/7, 7/4 8.826
6/5, 5/3 10.187
16/13, 13/8 10.381
15/14, 28/15 11.466
11/10, 20/11 12.277
10/9, 9/5 13.960
13/12, 24/13 14.155
7/5, 10/7 15.239
13/11, 22/13 16.245
18/13, 13/9 17.928
14/13, 13/7 19.207

Mozart - Adagio in B minor KV 540 by Carlo Serafini (blog entry)

"Mozart's tuning: 55edo" (containing another listening example) in the tonalsoft encyclopedia