Meantone family

From TD Xenharmonic Wiki
(Redirected from Septimal meantone)
Jump to navigation Jump to search

de:mitteltönig

The 5-limit parent comma of the meantone family is the Didymus or syntonic comma, 81/80. This is the one they all temper out. The monzo for 81/80 goes |-4 4 -1>, and that can be flipped around to the corresponding wedgie, <<1 4 4||, which tells us that the period is an octave, the generator is a fifth, and four fifths go to make up a 5/1 interval.

POTE generator: ~3/2 = 696.239

Mapping generator: ~3

valid range: [685.714, 720.000] (7 to 5)

nice range: [694.786, 701.955] (1/3 comma to Pythagorean)

strict range: [694.786, 701.955]

Map: [<1 0 -4|, <0 1 4|]

EDOs: 5, 7, 12, 19, 24, 26, 31, 36, 38, 43, 45, 50, 55, 57, 62, 67, 69, 74, 76, 81, 86, 88, 93, 98, 100, 105, 117, 129, 212b

Badness: 0.00736

Seven limit children[edit]

The 7-limit children of 81/80 are septimal meantone, with normal comma list [|-4 4 -1>, |-13 10 0 -1>], flattone, with normal list [|-4 4 -1>, |-17 9 0 1>], dominant, with normal list [|-4 4 -1>, |6 -2 0 -1>], sharptone, with normal list [|-4 4 -1>, |2 -3 0 1>], injera, with normal list [|-4 4 -1>, |-7 8 0 -2>], mohajira, with normal list [|-4 4 -1>, |-23 11 0 2>], godzilla, with normal list [|-4 4 -1>, |-4 -1 0 2>], mothra, with normal list [|-4 4 -1>, |-10 1 0 3>], squares, with normal list [|-4 4 -1>, |-3 9 0 -4>], and liese, with normal list [|-4 4 -1>, |-9 11 0 -3>].

Septimal meantone[edit]

Deutsch

Wikipedia article

The comma |-13 10 0 -1> for septimal meantone tells us that the interval class for 7 is 10 generator steps up. Hence, the 7/4 of septimal meantone is the augmented sixth, C-A#, and other septimal intervals are 7/6, C-D#, the augmented second, and 7/5, C-F#, the tritone. The wedgie for septimal meantone is <<1 4 10 4 13 12||, again telling us how to get to 5 and 7 in terms of generator steps. The temperament, aside from what is on the normal list, tempers out 126/125 and 225/224, and 31edo is a good tuning for it.

Commas: 81/80, 126/125

7 and 9-limit minimax

[|1 0 0 0>, |1 0 1/4 0>, |0 0 1 0>, |-3 0 5/2 0>]

Eigenmonzos: 2, 5

valid range: [694.737, 700.000] (19 to 12)

nice range: [694.786, 701.955]

strict range: [694.786, 700.000]

POTE generator: 696.495

Mapping generator: ~3

Algebraic generator: Cybozem, the real root of 15x^3-10x^2-18, which comes to 503.4257 cents. The recurrence converges quickly.

Map: [<1 0 -4 -13|, <0 1 4 10|]

Generators: 2, 3

Wedgie: <<1 4 10 4 13 12||

EDOs: 12, 19, 31, 43, 50, 62, 74, 81, 93, 105, 143b

Badness: 0.0137

Bimeantone[edit]

11/8 is mapped to half octave minus the meantone diesis.

Commas: 81/80, 126/125, 245/242

POTE generator: ~3/2 = 696.016

Map: [<2 0 -8 -26 -31|, <0 1 4 10 12|]

EDOs: 12, 38d, 50

Badness: 0.0381

13-limit[edit]

Commas: 81/80, 105/104, 126/125, 245/242

POTE generator: ~3/2 = 695.836

Map: [<2 0 -8 -26 -31 -40|, <0 1 4 10 12 15|]

EDOs: 12f, 50

Badness: 0.0288

Unidecimal meantone aka Huygens[edit]

See also Meantone vs meanpop

Commas: 81/80, 126/125, 99/98

11-limit minimax

[|1 0 0 0 0>, |25/16 -1/8 0 0 1/16>, |9/4 -1/2 0 0 1/4>, |21/8 -5/4 0 0 5/8>, |25/8 -9/4 0 0 9/8>]

Eigenmonzos: 2, 11/9

valid range: [696.774, 700.000] (31 to 12)

nice range: [691.202, 701.955]

strict range: [696.774, 700.000]

POTE generator: 696.967

Mapping generator: ~3

Algebraic generator: Traverse, the positive real root of x^4+2x-13, or 696.9529 cents.

Map: [<1 0 -4 -13 -25|, <0 1 4 10 18|]

Generators: 2, 3

EDOs: 12, 31, 43, 62, 74, 105, 198be

Badness: 0.0170

Twinkle canon – 74 edo by Claudi Meneghin

Tridecimal meantone[edit]

Commas: 66/65, 81/80, 99/98, 105/104

valid range: 697.674 (43)

nice range: [691.202, 701.955]

strict range: 697.674

POTE generator: ~3/2 = 696.642

Mapping generator: ~3

Map: [<1 0 -4 -13 -25 -20|, <0 1 4 10 18 15|]

EDOs: 31

Badness: 0.0180

Grosstone[edit]

Commas: 81/80, 99/98, 126/125, 144/143

POTE generator: ~3/2 = 697.264

Mapping generator: ~3

Map: [<1 0 -4 -13 -25 29|, <0 1 4 10 18 -16|]

EDOs: 12, 31, 43, 74, 105

Badness: 0.0259

Meridetone[edit]

Commas: 78/77, 81/80, 99/98, 126/125

POTE generator: ~3/2 = 697.529

Mapping generator: ~3

Map: [<1 0 -4 -13 -25 -39|, <0 1 4 10 18 27|]

EDOs: 43, 117df, 160bdf, 203bcdef

Badness: 0.0264

Hemimeantone[edit]

Commas: 81/80, 99/98, 126/125, 169/168

POTE generator: ~52/45 = 250.304

Mapping generator: ~26/15

Map: [<1 0 -4 -13 -25 -5|, <0 2 8 20 36 11|]

EDOs: 43, 62, 167bef, 229bef

Badness: 0.0314

Meanpop[edit]

See also Meantone vs meanpop

Commas: 81/80, 126/125, 385/384

11-limit minimax 1/4 comma

[|1 0 0 0 0>, |1 0 1/4 0 0>, |0 0 1 0 0>, |-3 0 5/2 0 0>, |11 0 -13/4 0 0>]

Eigenmonzos: 2, 5

valid range: [694.737, 696.774] (19 to 31)

nice range: [691.202, 701.955]

strict range: [694.737, 696.774]

POTE generator: 696.434

Mapping generator: ~3

Algebraic generator: Cybozem; or else Radieubiz, the real root of 3x^3+6x-19. Unlike Cybozem, the recurrence for Radieubiz does not converge.

Scott Joplin's "The Entertainer" tuned into meanpop

Map: [<1 0 -4 -13 24|, <0 1 4 10 -13|]

Generators: 2, 3

EDOs: 19, 31, 50, 62, 81

Badness: 0.0215

Twinkle canon – 50 edo by Claudi Meneghin

13-limit Meanpop[edit]

Commas: 81/80, 105/104, 144/143, 196/195

valid range: [694.737, 696.774] (19 to 31)

nice range: [691.202, 701.955]

strict range: [694.737, 696.774]

POTE generator: ~3/2 = 696.211

Mapping generator: ~3

Map: [<1 0 -4 -13 24 -20|, <0 1 4 10 -13 15|]

EDOS: 19, 31, 50, 81, 131bd, 212bdf

Badness: 0.0209

Meanplop[edit]

Commas: 65/64, 78/77, 81/80, 91/90

POTE generator: ~3/2 = 696.202

Mapping generator: ~3

Map: [<1 0 -4 -13 24 10|, <0 1 4 10 -13 -4|]

EDOs: 12e, 19, 31f, 50f

Badness: 0.0277

Meanenneadecal[edit]

Commas: 45/44, 56/55, 81/80

POTE generator: ~3/2 = 696.250

Mapping generator: ~3

Map: [<1 0 -4 -13 -6|, <0 1 4 10 6|]

EDOs: 7, 12, 19, 31e, 50e

Badness: 0.0214

13-limit[edit]

Commas: 45/44, 56/55, 78/77, 81/80

POTE generator: ~3/2 = 696.146

Mapping generator: ~3

Map: [<1 0 -4 -13 -6 -20|, <0 1 4 10 6 15|]

EDOs: 19, 31e, 50e]

Badness: 0.0212

Vincenzo[edit]

Commas: 81/80 126/125 45/44 65/64 256/255 153/152 23/22

POTE generator: ~3/2

Mapping generator: ~3

Map: [<1 0 -4 -13 ... |, <0 1 4 10 6 -4 -5 -3 -6|]

EDOs: 12

Badness:

Meanundeci[edit]

Commas: 33/32, 55/54, 77/75

POTE generator: ~3/2 = 694.689

Mapping generator: ~3

Map: [<1 0 -4 -13 5|, <0 1 4 10 -1|]

EDOs: 12e, 19e

Badness: 0.0315

13-limit[edit]

Commas: 33/32, 55/54, 77/75, 729/728

POTE generator: ~3/2 = 694.764

Mapping generator: ~3

Map: [<1 0 -4 -13 5 10|, <0 1 4 10 -1 -4|]

EDOs: 12e, 19e

Badness: 0.0263

Meanundec[edit]

Commas: 27/26, 40/39, 45/44, 56/55

POTE generator: ~3/2 = 697.254

Mapping generator: ~3

Map: [<1 0 -4 -13 -6 -1|, <0 1 4 10 6 3|]

EDOS: 12f, 19f, 31ef

Badness: 0.0242

Flattone[edit]

Commas: 81/80, 525/512

The wedgie for flattone is <<1 4 -9 4 -17 -32||, which tells us among other things that 9 generator steps of 4/3 get to the interval class for 7, meaning that 7/4 is a diminished seventh interval. Other intervals are 7/6, a diminished third, and 7/5, a doubly diminshed fifth. Good tunings for flattone are 26edo, 45edo and 64edo.

7-limit minimax

[|1 0 0 0>, |21/13 0 1/13 -1/13>, |32/13 0 4/13 -4/13>, |32/13 0 -9/13 9/13>]

Eigenmonzos: 2, 7/5

9-limit minimax

[|1 0 0 0>, |17/11 2/11 0 -1/11>, |24/11 8/11 0 -4/11>, |34/11 -18/11 0 9/11>]

Eigenmonzos: 2, 9/7

valid range: [692.308, 694.737] (26 to 19)

nice range: [692.353, 701.955]

strict range: [692.353, 694.737]

POTE generator: 693.779

Mapping generator: ~3

Algebraic generator: Squarto, the positive root of 8x^2-4x-9, at 506.3239 cents, equal to (1+sqrt(19))/4.

Map: [<1 0 -4 17|, <0 1 4 -9|]

Wedgie: <<1 4 -9 4 -17 -32||

Generators: 2, 3

EDOs: 7, 19, 45, 64

Badness: 0.0386

11-limit[edit]

Commas: 45/44, 81/80, 385/384

valid range: [692.308, 694.737] (26 to 19)

nice range: [682.502, 701.955]

strict range: [692.308, 694.737]

POTE generator: ~3/2 = 693.126

Mapping generator: ~3

Map: [<1 0 -4 17 -6|, <0 1 4 -9 6|]

EDOs: 7, 19, 26, 45, 71bc, 116bcde

Badness: 0.0338

13-limit[edit]

45/44, 65/64, 78/77, 81/80

valid range: [692.308, 694.737] (26 to 19)

nice range: [682.502, 701.955]

strict range: [692.308, 694.737]

POTE generator: ~3/2 = 693.058

Mapping generator: ~3

Map: [<1 0 -4 17 -6 10|, <0 1 4 -9 6 -4|]

EDOs: 7, 19, 26, 45f, 71bcf, 116bcdef

Badness: 0.0223

Dominant[edit]

Commas: 36/35, 64/63

The wedgie for dominant is <<1 4 -2 4 -6 -16||. Now the interval class for 7 is obtained from two fourths in succession, so that 7/4 is a minor seventh. The 7/6 interval is, like 6/5, now a minor third, and 7/5 is a diminished fifth. An excellent tuning for dominant is 12edo, but it also works well with the Pythagorean tuning of pure 3/2 fifths, and with 29edo, 41edo, or 53edo.

valid range: [700.000, 720.000] (12 to 5)

nice range: [694.786, 715.587]

strict range: [700.000, 715.587]

POTE generator: 701.573

Mapping generator: ~3

Map: [<1 0 -4 6|, <0 1 4 -2|]

Wedgie: <<1 4 -2 4 -6 -16||

EDOs: 5, 7, 12, 53, 65

Badness: 0.0207

11-limit[edit]

Commas: 36/35, 64/63, 56/55

valid range: [700.000, 705.882] (12 to 17)

nice range: [691.202, 715.587]

strict range: [700.000, 705.882]

POTE generator: ~3/2 = 703.254

Mapping generator: ~3

Map: [<1 0 -4 6 13|, <0 1 4 -2 -6|]

EDOs: 5, 12, 17c, 29cde

Badness: 0.0242

13-limit[edit]

Commas: 36/35, 56/55, 64/63, 66/65

valid range: 705.882 (17)

nice range: [691.202, 715.587]

strict range:705.882

POTE generator: ~3/2 = 703.636

Map: [<1 0 -4 6 13 18|, <0 1 4 -2 -6 -9|]

EDOs: 12f, 17c, 29cdef

Badness: 0.0241

Dominion[edit]

Commas: 26/25, 36/35, 56/55, 64/63

POTE generator: ~3/2 = 704.905

Map: [<1 0 -4 6 13 -9|, <0 1 4 -2 -6 8|]

EDOs: 5, 12, 17c, 46cde

Badness: 0.0273

Domineering[edit]

Commas: 36/35, 45/44, 64/63

POTE generator: ~3/2 = 698.776

Mapping generator: ~3

Map: [<1 0 -4 6 -6|, <0 1 4 -2 6|]

EDOs: 7, 12, 43de

Badness: 0.0220

Domination[edit]

Commas: 36/35, 64/63, 77/75

POTE generator: ~3/2 = 705.004

Mapping generator: ~3

Map: [<1 0 -4 6 -14|, <0 1 4 -2 11|]

EDOs: 17c, 46cd

Badness: 0.0366

13-limit[edit]

Commas: 26/25, 36/35, 64/63, 66/65

POTE generator: ~3/2 = 705.496

Mapping generator: ~3

Map: [<1 0 -4 6 -14 -9|, <0 1 4 -2 11 8|]

EDOs: 17c

Badness: 0.0274

Twelve[edit]

Commas: 81/80 64/63 45/44 65/64 256/255 153/152

POTE generator: ~3/2 = 696.217

Mapping generator: ~3

Map: [<1 0 -4 6 -6 10 12 9|, <0 1 4 -2 6 -4 -5 -3|]

EDOs: 7, 12, 19d, 31def

Badness: 0.0204

Arnold[edit]

Commas: 22/21, 33/32, 36/35

POTE generator: ~3/2 = 698.491

Mapping generator: ~3

Map: [<1 0 -4 6 5|, <0 1 4 -2 -1|]

EDOs: 5, 7, 12e

Badness: 0.0261

13-limit[edit]

Commas: 22/21, 27/26, 33/32, 40/39

POTE generator: ~3/2 = 696.743

Mapping generator: ~3

Map: [<1 0 -4 6 5 -1|, <0 1 4 -2 -1 3|]

EDOs: 5, 7, 12ef, 19def, 31def

Badness: 0.0233

Dominatrix[edit]

Commas: 27/26 36/35 45/44 64/63

POTE generator: ~3/2 = 698.544

Mapping generator: ~3

Map: [<1 0 -4 6 -6 -1|, <0 1 4 -2 6 3|]

EDOs: 7, 12f

Badness: 0.0183

Sharptone[edit]

Commas: 21/20, 28/27

Sharptone, with a wedgie <<1 4 3 4 2 -4||, is a low-accuracy temperament tempering out 21/20 and 28/27. In sharptone, a 7/4 is a major sixth, a 7/6 a whole tone, and a 7/5 a fourth. Genuinely septimal sounding harmony therefore cannot be expected, but it can be used to translate, more or less, 7-limit JI into 5-limit meantone. 12edo tuning does sharptone about as well as such a thing can be done, of course not in its patent val.

POTE generator: 700.140

Mapping generator: ~3

Map: [<1 0 -4 -2|, <0 1 4 3|]

Wedgie: <<1 4 3 4 2 -4||

EDOs: 5, 12

Badness: 0.0248

Meansept[edit]

Commas: 15/14, 81/80

POTE generator: ~3/2 = 682.895

Mapping generator: ~3

Map: [<1 0 -4 -5|, <0 1 4 5|]

Wedgie: <<1 4 5 4 5 0||

EDOs: 7

Badness: 0.0453

11-limit[edit]

Commas: 15/14, 22/21, 125/121

POTE generator: ~3/2 = 685.234

Mapping generator: ~3

Map: [<1 0 -4 -5 -6|, <0 1 4 5 6|]

EDOs: 7

Badness: 0.0325

Supermean[edit]

Commas: 81/80, 672/625

POTE generator: ~3/2 = 704.889

Map: [<1 0 -4 -21|, <0 1 4 15|]

EDOs: 17c, 46c

Badness: 0.1342

11-limit[edit]

Commas: 56/55, 81/80, 132/125

POTE generator: ~3/2 = 705.096

Map: [<1 0 -4 -21 -14|, <0 1 4 15 11|]

EDOs: 17c, 46c

Badness: 0.0633

13-limit[edit]

Commas: 26/25, 56/55, 66/65, 81/80

POTE generator: ~3/2 = 705.094

Map: [<1 0 -4 -21 -14 -9|, <0 1 4 15 11 8|]

EDOs: 17c, 46c

Injera[edit]

Commas: 50/49, 81/80

The wedgie for injera is <<2 8 8 8 7 -4||, which tells us it has a half-octave period and a generator which can be taken as a fifth or fourth, but also as a 15/14 semitone difference between a half-octave and a perfect fifth. Injera tempers out 50/49, equating 7/5 with 10/7 and giving a tritone of half an octave. A major third up from this tritone is the 7/4. 38edo, which is two parallel 19edos, is an excellent tuning for injera.

Origin of the name

valid range: [685.714, 700.000] (14c to 12)

nice range: [688.957, 701.955]

strict range: [688.957, 700.000]

POTE generator: 694.375

Mapping generator: ~3

Map: [<2 0 -8 -7|, <0 1 4 4|]

Wedgie: <<2 8 8 8 7 -4||

EDOs: 12, 26, 38, 102bcd, 140bcd, 178bcd

Badness: 0.0311

Two Pairs of Socks (in 26edo) by Igliashon Calvin Jones-Coolidge

Injera Jam (in 26edo) by Zach Curley

11-limit[edit]

Commas: 45/44, 50/49, 81/80

valid range: [685.714, 700.000] (14c to 12)

nice range: [682.458, 701.955]

strict range: [685.714, 700.000]

POTE generator: ~3/2 = 692.840

Mapping generator: ~3

Map: [<2 0 -8 -7 -12|, <0 1 4 4 6|]

EDOs: 12, 14c, 26. 90bce, 116bce

Badness: 0.0231

13-limit[edit]

Commas: 45/44, 50/49, 81/80, 78/77

valid range: 692.308 (26)

nice range: [682.458, 701.955]

strict range: 692.308 (26)

POTE generator: ~3/2 = 692.673

Mapping generator: ~3

Map: [<2 0 -8 -7 -12 -21|, <0 1 4 4 6 9|]

EDOs: 26, 104bcf

Badness: 0.0216

Enjera[edit]

Commas: 27/26, 40/39, 45/44, 99/98

POTE generator: ~3/2 = 694.121

Mapping generator: ~3

Map: [<2 0 -8 -7 -12 -2|, <0 1 4 4 6 3|]

EDOs: 12f, 26f, 38ef

Badness: 0.0265

Injerous[edit]

Commas: 33/32, 50/49, 55/54

POTE generator: ~3/2 = 690.548

Mapping generator: ~3

Map: [<2 0 -8 -7 10|, <0 1 4 4 -1|]

EDOs: 12e, 14c, 26e, 40ce

Badness: 0.0386

Lahoh[edit]

Commas: 50/49, 56/55, 81/77

POTE generator: ~3/2 = 699.001

Mapping generator: ~3

Map: [<2 0 -8 -7 7|, <0 1 4 4 0|]

EDOs: 12

Badness: 0.0431

Godzilla[edit]

Deutsch

Main article: Semaphore and Godzilla

Commas: 49/48, 81/80

Godzilla has wedgie <<2 8 1 8 -4 -20||, and tempers out 49/48, equating 8/7 with 7/6. Two of the step-and-a-quarter intervals these represent give a fourth, and so step-and-a-quarter generators generate godzilla. 19edo is the perfect godzilla tuning, so much so that's there's not much point in looking elsewhere. Hence it can be more or less equated with taking 4\19 as a generator. MOS are of 5, 9, or 14 notes.

valid range: [240.000, 257.143] (5 to 14c)

nice range: [231.174, 266.871]

strict range: [240.000, 257.143]

POTE generator: ~8/7 = 252.635

Mapping generator: ~7/4

Map: [<1 0 -4 2|, <0 2 8 1|]

Wedgie: <<2 8 1 8 -4 -20||

EDOs: 5, 9c, 14c, 19, 62d, 81d, 143bd

Badness: 0.0267

11-limit[edit]

Commas: 45/44, 49/48, 81/80

valid range: [252.632, 257.143] (19 to 14c)

nice range: [231.174, 266.871]

strict range: [252.632, 257.143]

POTE generator: ~8/7 = 254.027

Mapping generator: ~7/4

Map: [<1 0 -4 2 -6|, <0 2 8 1 12|]

EDOs: 14c, 19, 33cd, 52cd

Badness: 0.0290

13-limit[edit]

Commas: 45/44, 49/48, 78/77, 81/80

valid range: 694.737 (19)

nice range: [621.581, 737.652]

strict range: 694.737

POTE generator: ~8/7 = 253.603

Mapping generator: ~7/4

Map: [<1 0 -4 2 -6 -5|, <0 2 8 1 12 11|]

EDOs: 14cf, 19, 33cdf, 52cdf

Badness: 0.0225

Semafour[edit]

Commas: 33/32, 49/48, 55/54

POTE generator: ~8/7 = 254.042

Mapping generator: ~7/4

Map: [<1 0 -4 2 5|, <0 2 8 1 -2|]

EDOs: 5, 14c, 19e, 33cde

Badness: 0.0285

Varan[edit]

Commas: 49/48, 77/75, 81/80

POTE generator: ~8/7 = 251.079

Mapping generator: ~7/4

Map: [<1 0 -4 2 -10|, <0 2 8 1 17|]

EDOs: 19e, 24, 43de

Badness: 0.0396

13-limit[edit]

Commas: 49/48, 66/65, 77/75, 81/80

POTE generator: ~8/7 = 251.165

Mapping generator: ~7/4

Map: [<1 0 -4 2 -10 -5|, <0 2 8 1 17 11|]

EDOs: 19e, 24, 43de

Badness: 0.0257

Baragon[edit]

Commas: 49/48, 56/55, 81/80

POTE generator: ~8/7 = 251.173

Mapping generator: ~7/4

Map: [<1 0 -4 2 9|, <0 2 8 1 -7|]

EDOs: 19, 24, 43d

Badness: 0.0357

Music[edit]

Godzilla Example by Cameron Bobro

"Change is on the Wind" in Godzilla[9] by Igliashon Jones

Mohajira[edit]

Deutsch

Commas: 81/80, 6144/6125

Mohajira, with wedgie <<2 8 -11 8 -23 -48||, really makes more sense as an 11-limit temperament. It has a generator of a neutral third, two of which make up a fifth, and which can be taken to represent 128/105. Mohajira tempers out 6144/6125, the porwell comma. 31edo makes for an excellent (7-limit) mohajira tuning, with generator 9/31. It has a 7-note MOS with three larger steps and four smaller ones, going sLsLsLs.

Mohajira can also be thought of, intuitively, as "meantone with quarter tones"; as is the 3/2 generator subdivided in half, so is the 25/24 chromatic semitone divided into two equal ~33/32 quarter tones (in the 11-limit). Within this paradigm, mohajira is the temperament that splits the 3/2 into two equal 11/9's, that splits the 6/5 into two equal 11/10's, that maps four 3/2's to 5/1, and that maps the interval one quarter tone flat of 16/9 to 7/4.

7 and 9-limit minimax 1/4 comma

[|1 0 0 0>, |1 0 1/4 0>, |0 0 1 0>, |6 0 -11/8 0>]

Eigenmonzos: 2, 5

POTE generator: ~128/105 = 348.415

Mapping generator: ~128/105

Algebraic generator: Mohabis, real root of 3x^3-3x^2-1, 348.6067 cents. Corresponding recurrence converges quickly.

Map: [<1 1 0 6|, <0 2 8 -11|]

Generators: 2, 128/105

Wedgie: <<2 8 -11 8 -23 -48||

EDOs: 7, 24, 31

Badness: 0.0557

11-limit[edit]

Commas: 81/80, 121/120, 176/175

11-limit minimax 1/4 comma

[|1 0 0 0 0>, |1 0 1/4 0 0>, |0 0 1 0 0>, |6 0 -11/8 0 0>, |2 0 5/8 0 0>]

Eigenmonzos: 2, 5

POTE generator: ~11/9 = 348.477

Mapping generator: ~11/9

Map: [<1 1 0 6 2|, <0 2 8 -11 5|]

Generators: 2, 11/9

EDOs: 7, 24, 31

Badness: 0.0261

13-limit[edit]

Commas: 81/80, 121/120, 105/104, 66/65

POTE generator: ~11/9 = 348.558

Mapping generator: ~11/9

Map: [<1 1 0 6 2 4|, <0 2 8 -11 5 -1|]

EDOs: 7, 24, 31, 117ef, 148bef

Badness: 0.0234

Ptolemy[edit]

Commas: 81/80, 121/120, 525/512

POTE generator: ~11/9 = 346.922

Map: [<1 1 0 8 2|, <0 2 8 -18 5|]

EDOs: 7, 38d, 45e, 83bcde

Badness: 0.0588

13-limit[edit]

Commas: 65/64, 81/80, 105/104, 121/120

POTE generator: ~11/9 = 346.910

Map: [<1 1 0 8 2 6|, <0 2 8 -18 5 -8|]

EDOs: 7, 38df, 45ef, 83bcdef

Badness: 0.0343

Maqamic[edit]

Deutsch

Main article: Maqamic

Commas: 81/80, 36/35, 121/120

Maqamic temperament is much like Mohajira, except in that it 36/35 vanishes instead of 176/175. It makes the most sense if viewed as an adaptive temperament, whereby 7/4 and 9/5 simply share an equivalence class in the resulting scales, but don't need to share a particular tempered "middle-of-the-road" intonation.

POTE generator: ~11/9 = 350.934

Mapping generator: ~11/9

Map: [<1 1 0 4 2|, <0 2 8 -4 5|]

Generators: 2, 11/9

EDOs: 7, 10c, 17c, 24d, 31d

13-limit[edit]

Commas: 81/80, 36/35, 121/120, 144/143

POTE generator: ~11/9 = 350.816

Mapping generator: ~11/9

Map: [<1 1 0 4 2 4|, <0 2 8 -4 5 -1|]

Generators: 2, 11/9

EDOs: 7, 10c, 17c, 24d, 31d

Migration[edit]

Commas: 81/80, 121/120, 126/125

POTE generator: ~11/9 = 348.182

Mapping generator: ~11/9

Map: [<1 1 0 -3 2|, <0 2 8 20 5|]

EDOs: 31, 100de, 131bde, 162bde

Badness: 0.0255

Mohamaq[edit]

Commas: 81/80, 392/375

POTE generator: ~25/21 = 350.586

Mapping generator: ~25/21

Map: [<1 1 0 -1|, <0 2 8 13|]

EDOs: 17c, 24, 65c, 89cd

Badness: 0.0777

11-limit[edit]

Commas: 56/55, 77/75, 243/242

POTE generator: ~11/9 = 350.565

Mapping generator: ~11/9

Map: [<1 1 0 -1 2|, <0 2 8 13 5|]

EDOs: 17c, 24, 65c, 89cd

Badness: 0.0362

13-limit[edit]

Commas: 56/55, 66/65, 77/75, 243/242

POTE generator: ~11/9 = 350.745

Mapping generator: ~11/9

Map: [<1 1 0 -1 2 4|, <0 2 8 13 5 -1|]

EDOs: 17c, 24, 41c, 65c

Badness: 0.0287

Orphic[edit]

Commas: 81/80, 5898240/5764801

POTE generator: ~7/6 = 275.794

Mapping generator: ~343/288

Map: [<2 1 -4 4|, <0 4 16 3|]

Wedgie: <<8 32 6 32 -13 -76||

EDOs: 26, 74, 174bd, 248bd

Badness: 0.2588

11-limit[edit]

Commas: 81/80, 99/98, 73728/73205

POTE generator: ~7/6 = 275.762

Mapping generator: ~77/64

Map: [<2 1 -4 4 8|, <0 4 16 3 -2|]

EDOs: 26, 48c, 74, 248bd, 322bd

Badness: 0.1015

13-limit[edit]

Commas: 81/80, 99/98, 144/143, 2200/2197

POTE generator: ~7/6 = 275.774

Mapping generator: ~63/52

Map: [<2 1 -4 4 8 2|, <0 4 16 3 -2 10|]

EDOs: 26, 48c, 74, 174bd, 248bd, 322bd

Badness: 0.0535

Mothra[edit]

Commas: 81/80, 1029/1024

Mothra, with wedgie <<3 12 -1 12 -10 -36||, splits the fifth into three 8/7 generators. It uses 1029/1024, the gamelisma, to accomplish this deed and also tempers out 1728/1715, the orwell comma. Using 31edo with a generator of 6/31 is an excellent tuning choice. Once again something other than a MOS should be used as a scale to get the most out of mothra. In the 2.3.7-limit, mothra is identical to slendric.

Note that mothra can also be called cynder in the 7-limit, which can be a little confusing sometimes.

7 and 9-limit minimax 1/4 comma

[|1 0 0 0>, |1 0 1/4 0>, |0 0 1 0>, |3 0 -1/12 0>]

Eigenmonzos: 2, 5

POTE generator: ~8/7 = 232.193

Mapping generator: ~8/7

Algebraic generator: Rabrindanath, largest real root of x^8-3x^2+1, or 232.0774 cents.

Map: [<1 1 0 3|, <0 3 12 -1|]

Generators: 2, 8/7

Wedgie: <<3 12 -1 12 -10 -36||

EDOs: 5, 26, 31

Badness: 0.0371

11-limit[edit]

Commas: 81/80, 99/98, 385/384

POTE generator: ~8/7 = 232.031

Mapping generator: ~8/7

Map: [<1 1 0 3 5|, <0 3 12 -1 -8|]

EDOs: 5, 26, 31, 88, 150, 181

Badness: 0.0256

13-limit[edit]

Commas: 81/80, 99/98, 105/104, 144/143

POTE generator: ~8/7 = 231.811

Mapping generator: ~8/7

Map: [<1 1 0 3 5 1|, <0 3 12 -1 -8 14|]

EDOs: 5, 26, 31, 57, 88

Badness: 0.0240

Cynder[edit]

Commas: 45/44, 81/80, 1029/1024

POTE generator: ~8/7 = 231.317

Mapping generator: ~8/7

Map: [<1 1 0 3 0|, <0 3 12 -1 18|]

EDOs: 26, 57e, 83bce

Badness: 0.0557

13-limit[edit]

Commas: 45/44, 78/77, 81/80, 640/637

POTE generator: ~8/7 = 231.293

Mapping generator: ~8/7

Map: [<1 1 0 3 0 1|, <0 3 12 -1 18 14|]

EDOs: 26, 57e, 83bce

Badness: 0.0341

Mosura[edit]

Commas: 81/80, 176/175, 1029/1024

POTE generator: ~8/7 = 232.419

Mapping generator: ~8/7

Map: [<1 1 0 3 -1|, <0 3 12 -1 23|]

EDOs: 31, 129, 136b, 148be, 160be, 191bce, 222bce, 253bce

Badness: 0.0313

13-limit[edit]

Commas: 81/80, 144/143, 176/175, 1029/1024

POTE generator: ~8/7 = 232.640

Mapping generator: ~8/7

Map: [<1 1 0 3 -1 7|, <0 3 12 -1 23 -17|]

EDOs: 31, 67, 98

Badness: 0.0369

Squares[edit]

Commas: 81/80, 2401/2400

Squares, with wedgie <<4 16 9 16 3 -24||, splits the interval of an eleventh, or 8/3, into four supermajor third (9/7) intervals, and uses it for a generator. 31edo, with a generator of 11/31, makes for a good squares tuning, with 8, 11, and 14 note MOS available. Squares tempers out 2401/2400, the breedsma, as well as 2430/2401.

7 and 9 limit minimax 1/4 comma

[|1 0 0 0>, |1 0 1/4 0>, |0 0 1 0>, |3/2 0 9/16 0>]

Eigenmonzos: 2, 5

POTE generator: ~9/7 = 425.942

Mapping generator: ~9/7

Algebraic generator: Sceptre2, the positive root of 9x^2+x-16, or (sqrt(577)-1)/18, which is 425.9311 cents.

Map: [<1 3 8 6|, <0 -4 -16 -9|]

Generators: 2, 9/7

EDOs: 14, 31, 262, 293

Badness: 0.0460

Music:

By Chris Vaisvil

Square 8

11-limit[edit]

Commas: 81/80, 99/98, 121/120

POTE generator: ~9/7 = 425.957

Mapping generator: ~9/7

Map: [<1 3 8 6 7|, <0 -4 -16 -9 -10|]

EDOs: 5, 8, 11, 14, 17, 31

Badness: 0.0216

13-limit[edit]

Commas: 81/80, 99/98, 121/120, 66/65

POTE generator: ~9/7 = 425.550

Mapping generator: ~9/7

Map: [<1 3 8 6 7 3|, <0 -4 -16 -9 -10 2|]

EDOs: 17c, 31, 79cf, 110cef, 141cef

Badness: 0.0255

Agora[edit]

Commas: 81/80, 99/98, 105/104, 121/120

POTE generator: ~9/7 = 426.276

Mapping generator: ~9/7

Map: [<1 3 8 6 7 14|, <0 -4 -16 -9 -10 -29|]

EDOs: 31, 45ef, 76e

Badness: 0.0245

Cuboctahedra[edit]

11-limit[edit]

Commas: 81/80, 385/384, 1375/1372

POTE generator: ~9/7 = 425.993

Mapping generator: ~9/7

Map: [<1 3 8 6 -4|, <0 -4 -16 -9 21|]

EDOs: 14, 31, 45, 200

Badness: 0.0568

Liese[edit]

Deutsch

Commas: 81/80, 686/675

Liese, with wedgie <<3 12 11 12 9 -8||, splits the twelfth interval of 3/1 into three generators of 10/7, using the comma 1029/1000. It also tempers out 686/675, the senga. 74edo makes for a good liese tuning, though 19edo can be used. The tuning is well-supplied with MOS: 7, 9, 11, 13, 15, 17, 19, 36, 55.

7 and 9 limit minimax 1/4 comma

[|1 0 0 0>, |1 0 1/4 0>, |0 0 1 0>, |2/3 0 11/12 0>]

Eigenmonzos: 2, 5

POTE generator: ~10/7 = 632.406

Mapping generator: ~10/7

Algebraic generator: Radix, the real root of x^5-2x^4+2x^3-2x^2+2x-2, also a root of x^6-x^5-2. The recurrence converges.

Map: [<1 0 -4 -3|, <0 3 12 11|]

Generators: 2, 10/7

EDOs: 17, 19, 55, 74

Badness: 0.0467

Liesel[edit]

Commas: 56/55, 81/80, 540/539

POTE generator: ~10/7 = 633.073

Mapping generator: ~10/7

Map: [<1 0 -4 -3 4|, <0 3 12 11 -1|]

EDOs: 17c, 19, 36, 91ce

Badness: 0.0407

13-limit[edit]

Liesel is a very natural 13-limit tuning, given the generator is so near 13/9.

Commas: 56/55, 78/77, 81/80, 91/90

POTE generator: ~10/7 = ~13/9 = 633.042

Mapping generator: ~10/7

Map: [<1 0 -4 -3 4 0|, <0 3 12 11 -1 7|]

EDOs: 17c, 19, 36, 91cef

Badness: 0.0273

Elisa[edit]

Commas: 77/75, 81/80, 99/98

POTE generator: ~10/7 = 633.061

Mapping generator: ~10/7

Map: [<1 0 -4 -3 -5|, <0 3 12 11 16|]

EDOs: 19e, 36e

Badness: 0.0416

Lisa[edit]

Commas: 45/44, 81/80, 343/330

POTE generator: ~10/7 = 631.370

Mapping generator: ~10/7

Map: [<1 0 -4 -3 -6|, <0 3 12 11 18|]

EDOs: 19

Badness: 0.0548

13-limit[edit]

Commas: 45/44, 81/80, 91/88, 147/143

POTE generator: ~10/7 = 631.221

Mapping generator: ~10/7

Map: [<1 0 -4 -3 -6 0|, <0 3 12 11 18 7|]

EDOs: 19

Badness: 0.0361

Jerome[edit]

Jerome is related to Hieronymus' tuning; the Hieronymus generator is 5^(1/20), or 139.316 cents. While the generator represents both 13/12 and 12/11, the POTE and Hieronymus generators are close to 13/12 in size.

Commas: 81/80, 17280/16807

POTE generator: ~54/49 = 139.343

Mapping generator: ~54/49

Map: [<1 1 0 2|, <0 5 20 7|]

Wedgie: <<5 30 7 20 -3 -40||

EDOs: 8, 9, 17, 26, 43, 112

Badness: 0.1087

11-limit[edit]

Commas: 81/80, 99/98, 864/847

POTE generator: ~12/11 = 139.428

Mapping generator: ~12/11

Map: [<1 1 0 2 3|, <0 5 20 7 4|]

EDOs: 8, 9, 17, 26, 43, 241

Badness: 0.0479

13-limit[edit]

Commas: 77/78, 81/80, 99/98, 144/143

POTE generator: ~13/12 = 139.387

Mapping generator: ~12/11

Map: [<1 1 0 2 3 3|, <0 5 20 7 4 6|]

EDOs: 8, 9, 17, 26, 43, 155, 198

Badness: 0.0293

17-limit[edit]

Commas: 78/77, 81/80, 99/98, 144/143, 189/187

POTE generator: ~13/12 = 139.362

Mapping generator: ~12/11

Map: [<1 1 0 2 3 3 2|, <0 5 20 7 4 6 18|]

EDOs: 8, 9, 17, 26, 43, 155

Badness: 0.0209

Meanmag[edit]

Commas: 81/80, 3125/3072

POTE generator: ~8/7 = 238.396

Mapping generator: ~7

Map: [<19 30 44 0|, <0 0 0 1|]

Wedgie: <<0 0 19 0 30 44||

EDOs: 19, 57, 76, 171bcd

Badness: 0.0770

Undevigintone[edit]

Commas: 49/48, 81/80, 126/125

POTE generator: ~11/8 = 538.047

Mapping generator: ~11

Map: [<19 30 44 53 0|, <0 0 0 0 1|]

EDOs: 19, 38d

Badness: 0.0364

13-limit[edit]

Commas: 49/48, 65/64, 81/80, 126/125

POTE generator: ~11/8 = 537.061

Map: [<19 30 44 53 0 70|, <0 0 0 0 1 0|]

EDOs: 19, 38d

Badness: 0.0229