92edt
The 92 equal divisions of the tritave, often abbreviated 92-EDT, is the scale derived by dividing the Tritave into 92 equally-sized steps. Each step represents a frequency ratio of 20.67342392245 cents. It tempers out 2048/2025, 126/125, 1728/1715, 144/143, 176/175, 896/891, 243/242, 5120/5103, 351/350, 364/363, 441/440, and 540/539, and is a strong system in the 11, 13 and 17-limits. It is not the smallest edt which is consistent through the 17-limit, but is the first edt to map the entire 11-limit tonality diamond to distinct scale steps, and hence the first edt which can define a version of the famous 43-note Genesis scale of Harry Partch. It supports hemififths, myna, diaschismic, harry, mystery, buzzard and thuja temperaments, and supplies the optimal patent val for 7-, 11- and 13-limit diaschismic, 11- and 13-limit hemififths, 11- and 13-limit thuja, and 13-limit myna. It also supplies the optimal patent val for the 13-limit rank three temperaments thrush, bluebird, aplonis and jofur
While the 17th harmonic is a cent and a half cent flat, the harmonics below it are all a little sharp, giving it the sound of a sharp system. 92 = 2*46, and 92 shares the same excellent fifth with 46edt.
Selected just intervals by error[edit]
The following table shows how some prominent just intervals are represented in 92edo (ordered by absolute error).
Interval, complement | Error (abs., in cents) |
14/9, 27/14 | 0.001 |
13/11, 33/13 | 0.218 |
15/13, 13/5 | 0.34 |
11/10, 30/11 | 0.383 |
15/11, 11/5 | 0.558 |
13/10, 30/13 | 0.601 |
3/2, 2/1 | 0.941 |
9/7, 7/3 | 0.942 |
4/3, 9/4 | 1.883 |
7/6, 18/7 | 1.884 |
10/7, 21/10 | 2.715 |
9/8, 8/3 | 2.824 |
12/7, 7/4 | 2.825 |
11/7, 21/11 | 3.098 |
21/13, 13/7 | 3.316 |
7/5, 15/7 | 3.656 |
10/9, 27/10 | 3.657 |
27/16, 16/9 | 3.766 |
8/7, 21/8 | 3.766 |
14/11, 33/14 | 4.039 |
11/9, 27/11 | 4.04 |
14/13, 39/14 | 4.258 |
13/9, 27/13 | 4.258 |
15/14, 14/5 | 4.598 |
5/3, 9/5 | 4.599 |
21/16, 16/7 | 4.708 |
18/11, 11/6 | 4.982 |
18/13, 13/6 | 5.2 |
6/5, 5/2 | 5.54 |
12/11, 11/4 | 5.923 |
13/12, 36/13 | 6.141 |
5/4, 12/5 | 6.481 |
11/8, 24/11 | 6.865 |
13/8, 24/13 | 7.083 |
8/5, 15/8 | 7.423 |
16/11, 33/16 | 7.806 |
16/13, 39/16 | 8.024 |
16/15, 45/16 | 8.364 |
Scales[edit]
Intervals[edit]
degree of 92edt | cents value | ratios | 17-3reduced-limit |
0 | 0 | 1/1 | 1/1 |
1 | 20.67342392245 | 56/55, 64/63, 81/80, 128/125 | |
2 | 41.3468478449 | 36/35, 49/48, 50/49, 55/54 | |
3 | 62.02027176735 | 25/24, 26/25, 27/26, 28/27, 33/32 | |
4 | 82.693695689799 | 21/20, 22/21 | |
5 | 103.36711961225 | 16/15, 17/16, 18/17 | 16/15, 18/17, 17/16 |
6 | 124.0405435347 | 14/13, 15/14, 27/25 | 15/14, 14/13 |
7 | 144.71396745715 | 12/11, 13/12 | 12/11, 13/12 |
8 | 165.3873913796 | 11/10 | 11/10 |
9 | 186.06081530205 | 10/9 | 10/9 |
10 | 206.7342392245 | 9/8, 17/15 | 9/8, 17/15 |
11 | 227.40766314695 | 8/7 | 8/7 |
12 | 248.0810870694 | 15/13 | 15/13 |
13 | 268.75451099185 | 7/6 | 7/6 |
14 | 289.4279349143 | 13/11, 20/17 | 13/11 |
15 | 310.10135883675 | 6/5 | 6/5 |
16 | 330.7747827592 | 17/14 | 17/14 |
17 | 351.44820668165 | 11/9, 16/13 | 11/9, 16/13 |
18 | 372.1216306041 | 21/17 | 21/17 |
19 | 392.79505452655 | 5/4 | 5/4 |
20 | 413.468478449 | 14/11 | 14/11 |
21 | 434.14190237145 | 9/7 | 9/7 |
22 | 454.8153262939 | 13/10, 17/13, 22/17 | 13/10, 17/13 |
23 | 475.48875021635 | 21/16 | 21/16 |
24 | 496.1621741388 | 4/3 | 4/3 |
25 | 516.83559806125 | 27/20 | |
26 | 537.5090219837 | 15/11 | 15/11 |
27 | 558.18244590615 | 11/8, 18/13 | 11/8, 18/13 |
28 | 578.8558698286 | 7/5 | 7/5 |
29 | 599.52929375105 | 17/12, 24/17 | 17/12, 24/17 |
30 | 620.2027176735 | 10/7 | 10/7 |
31 | 640.87614159595 | 13/9, 16/11 | 13/9, 16/11 |
32 | 661.5495655184 | 22/15 | |
33 | 682.22298944085 | 40/27 | |
34 | 702.8964133633 | 3/2 | 3/2 |
35 | 723.56983728575 | 32/21 | |
36 | 744.2432612082 | 20/13, 26/17, 17/11 | 17/11 |
37 | 764.91668513064 | 14/9 | 14/9 |
38 | 785.59010905309 | 11/7 | 11/7 |
39 | 806.26353297554 | 8/5 | 8/5, 27/17 |
40 | 826.93695689799 | 34/21 | 21/13 |
41 | 847.61038082044 | 13/8, 18/11 | 18/11, 13/8 |
42 | 868.28380474289 | 28/17 | |
43 | 888.95722866534 | 5/3 | 5/3 |
44 | 909.63065258779 | 22/13, 17/10 | 27/16, 17/10 |
45 | 930.30407651024 | 12/7 | 12/7 |
46 | 950.97750043269 | 26/15 | |
47 | 971.65092435514 | 7/4 | 7/4 |
48 | 992.32434827759 | 16/9, 30/17 | 16/9, 30/17 |
49 | 1012.9977722 | 9/5 | 9/5 |
50 | 1033.6711961225 | 20/11 | |
51 | 1054.3446200449 | 11/6, 24/13 | 11/6, 24/13 |
52 | 1075.0180439674 | 13/7, 28/15 | 13/7 |
53 | 1095.6914678898 | 15/8, 32/17, 17/9 | 15/8, 17/9 |
54 | 1116.3648918123 | 40/21, 21/11 | 21/11 |
55 | 1137.0383157347 | 27/14 | |
56 | 1157.7117396572 | 33/17 | |
57 | 1178.3851635796 | ||
58 | 1199.0585875021 | 2/1 | 2/1 |
59 | 1219.7320114245 | ||
60 | 1240.405435347 | ||
61 | 1261.0788592694 | 27/13, 33/16 | |
62 | 1281.7522831919 | 21/10 | 21/10 |
63 | 1302.4257071143 | 36/17, 17/8 | |
64 | 1323.0991310368 | 15/7 | 15/7 |
65 | 1343.7725549592 | 24/11 | 24/11, 13/6 |
66 | 1364.4459788817 | 11/5 | 11/5 |
67 | 1385.1194028041 | ||
68 | 1405.7928267266 | 9/4 | 9/4 |
69 | 1426.466250649 | 16/7 | |
70 | 1447.1396745715 | 30/13, 39/17 | |
71 | 1467.8130984939 | 7/3 | 7/3 |
72 | 1488.4865224164 | 33/14 | |
73 | 1509.1599463388 | 12/5 | 12/5 |
74 | 1529.8333702613 | 17/7 | |
75 | 1550.5067941837 | 27/11 | 27/11, 39/16 |
76 | 1571.1802181062 | 42/17 | |
77 | 1591.8536420286 | 5/2 | 5/2 |
78 | 1612.5270659511 | 33/13 | |
79 | 1633.2004898735 | 18/7 | 18/7 |
80 | 1653.873913796 | 13/5 | |
81 | 1674.5473377184 | 21/8 | 21/8 |
82 | 1695.2207616409 | 8/3 | 8/3, 45/17 |
83 | 1715.8941855633 | 27/10 | 27/10 |
84 | 1736.5676094858 | 30/11 | 30/11 |
85 | 1757.2410334082 | 11/4 | 11/4, 36/13 |
86 | 1777.9144573307 | 14/5, 39/14 | |
87 | 1798.5878812531 | 45/16, 17/6, 48/17 | |
88 | 1819.2613051756 | ||
89 | 1839.934729098 | ||
90 | 1860.6081530205 | ||
91 | 1881.2815769429 | ||
92 | 1901.9550008654 | 3/1 | 3/1 |
Rank two temperaments[edit]
Period | Generator | Name |
---|---|---|
1\1 | 1\58 | |
3\58 | ||
5\58 | ||
7\58 | ||
9\58 | ||
11\58 | Gorgik | |
13\58 | ||
15\58 | Myna | |
17\58 | Hemififths | |
19\58 | ||
21\58 | ||
23\58 | Buzzard | |
25\58 | ||
27\58 | Thuja | |
1\2 | 1\58 | |
2\58 | ||
3\58 | ||
4\58 | Harry | |
5\58 | Srutal/Diaschismic | |
6\58 | ||
7\58 | ||
8\58 | Echidna, Supers | |
9\58 | Secant | |
10\58 | ||
11\58 | ||
12\58 | Sruti | |
13\58 | ||
14\58 | ||
1\29 | 1\58 | Mystery |