Starling temperaments
Starling comma[edit]
This page discusses some of the rank two temperaments tempering out 126/125, the starling comma or septimal semicomma. Since (6/5)^3 = 126/125 * 12/7, these temperaments tend to have a relatively small complexity for 6/5. They also possess the starling tetrad, the 6/5-6/5-6/5-7/6 versions of the diminished seventh chord. Since this is a chord of meantone temperament in wide use in Western common practice harmony long before 12edo established itself as the standard tuning, it is arguably more authentic to tune it as three stacked minor thirds and an augmented second, which is what it is in meantone, than as the modern version of four stacked very flat minor thirds.
Myna temperament[edit]
In addition to 126/125, myna tempers out 1728/1715, the orwell comma, and 2401/2400, the breedsma. It can also be described as the 27&31 temperament, or in terms of its wedgie <<10 9 7 -9 -17 -9||. It has 6/5 as a generator, and 58edo can be used as a tuning, with 89edo being a better one, and fans of round amounts in cents may like 120edo. It is also possible to tune myna with pure fifths by taking 6^(1/10) as the generator. Myna extends naturally but with much increased complexity to the 11 and 13 limits.
5-limit (Mynic)[edit]
Comma: 10077696/9765625
POTE generator: ~6/5 = 310.140
Map: [<1 9 9|, <0 -10 -9|]
EDOs: 27, 31, 58, 89, 325c
Badness: 0.2500
7-limit[edit]
Commas: 126/125, 1728/1715
7 and 9 limit minimax
[|1 0 0 0>, |0 1 0 0 >, |9/10 9/10 0 0>, |17/10 7/10 0 0>]
Eigenmonzos: 2, 3
POTE generator: 310.146
Map: [<1 9 9 8|, <0 -10 -9 -7|]
Generators: 2, 5/3
EDOs: 27, 31, 58, 89
Badness: 0.0270
11-limit[edit]
Commas: 126/125, 176/175, 243/242
POTE generator: ~6/5 = 310.144
Map: [<1 9 9 8 22|, <0 -10 -9 -7 -25|]
EDOs: 31, 58, 89
Badness: 0.0168
13-limit[edit]
Commas: 126/125, 144/143, 176/175, 196/195
POTE generator: ~6/5 = 310.276
Map: [<1 9 9 8 22 0|, <0 -10 -9 -7 -25 5|]
EDOs: 27, 31, 58
Badness: 0.0171
Minah[edit]
Commas: 78/77, 91/90, 126/125, 176/175
POTE generator: ~6/5 = 310.381
Map: [<1 9 9 8 22 20|, <0 -10 -9 -7 -25 -22|]
EDOs: 27e, 31f, 58f, 116cef
Badness: 0.0276
Maneh[edit]
Commas: 66/65, 105/104, 126/125, 540/539
POTE generator: ~6/5 = 309.804
Map: [<1 9 9 8 22 23|, <0 -10 -9 -7 -25 -26|]
EDOs: 31
Badness: 0.0299
Myno[edit]
Commas: 99/98, 126/125, 385/384
POTE generator: ~6/5 = 309.737
Map: [<1 9 9 8 -1|, <0 -10 -9 -7 6|]
EDOs: 27, 31
Badness: 0.0334
Coleto[edit]
Commas: 56/55, 100/99, 1728/1715
POTE generator: ~6/5 = 310.853
Map: [<1 9 9 8 2|, <0 -10 -9 -7 2|]
EDOs: 23bc, 27e
Badness: 0.0487
Sensi temperament[edit]
Sensi tempers out 686/675, 245/243 and 4375/4374 in addition to 126/125, and can be described as the 19&27 temperament. It has as a generator half of a slightly wide major sixth, which gives an interval sharp of 9/7 and flat of 13/10, both of which can be used to identify it, as 13-limit sensi tempers out 91/90. 22/17, in the middle, is even closer to the generator. 46edo is an excellent sensi tuning, and MOS of size 11, 19 and 27 are available.
Commas: 126/125, 245/243
7-limit minimax
[|1 0 0 0>, |1/13 0 0 7/13>, |5/13 0 0 9/13>, |0 0 0 1>]
Eigenmonzos: 2, 7
9-limit minimax
[|1 0 0 0>, |2/5 14/5 -7/5 0>, |4/5 18/5 -9/5 0>, |3/5 26/5 -13/5 0>]
Eigenmonzos: 2, 9/5
POTE generator: ~9/7 = 443.383
Algebraic generator: Calista, the real root of x^7-2x^2-1, at 340.6467 cents.
Map: [<1 6 8 11|, <0 -7 -9 -13|]
Generators: 2, 14/9
EDOs: 19, 27, 46, 249, 295
Badness: 0.0256
Sensor[edit]
Commas: 126/125, 245/243, 385/384
POTE generator: ~9/7 = 443.294
Map: [<1 6 8 11 -6|, <0 -7 -9 -13 15|]
EDOs: 8, 19, 27, 46, 111, 157
Badness: 0.0379
13-limit[edit]
Commas: 91/90, 126/125, 169/168, 385/384
POTE generator: ~9/7 = 443.321
Map: [<1 6 8 11 -6 10|, <0 -7 -9 -13 15 -10|]
EDOs: 8, 19, 27, 46, 157
Badness: 0.0256
Sensis[edit]
Commas: 56/55, 100/99, 245/243
POTE generator: 443.962
Map: [<1 6 8 11 6|, <0 -7 -9 -13 -4|]
EDOs: 19, 27, 73, 100
Badness: 0.0287
13-limit[edit]
Commas: 56/55, 78/77, 91/90, 100/99
POTE generator: 443.945
Map: [<1 6 8 11 6 10|, <0 -7 -9 -13 -4 -10|]
EDOs: 19, 27, 73, 100
Badness: 0.0200
Sensus[edit]
Commas: 126/125, 176/175, 245/243
POTE generator: ~9/7 = 443.626
Map: [<1 6 8 11 23|, <0 -7 -9 -13 -31|]
EDOs: 8, 19, 27, 46, 165
Badness: 0.0295
13-limit[edit]
Commas: 91/90, 126/125, 169/168, 352/351
POTE generator: ~9/7 = 443.559
Map: [<1 6 8 11 23 10|, <0 -7 -9 -13 -31 -10|]
EDOs: 8, 19, 27, 46, 303
Badness: 0.0208
Valentine temperament[edit]
Valentine tempers out 1029/1024 and 6144/6125 as well as 126/125, so it also fits under the heading of the gamelismic clan. It has a generator of 21/20, which can be stripped of its 2 and taken as 3*7/5. In this respect it resembles miracle, with a generator of 3*5/7, and casablanca, with a generator of 5*7/3. These three generators are the simplest in terms of the relationship of tetrads in the lattice of 7-limit tetrads. Valentine can also be described as the 31&46 temperament, and 77edo, 108edo or 185edo make for excellent tunings, which also happen to be excellent tunings for starling temperament, the 126/125 planar temperament. Hence 7-limit valentine can be used whenever starling is wanted, with the extra tempering out of 1029/1024 having no discernible effect on tuning accuracy. Another tuning for valentine uses (3/2)^(1/9) as a generator, giving pure 3/2 fifths. Valentine extends naturally to the 11-limit as <<9 5 -3 7 ... ||, tempering out 121/120 and 441/440; 46et has a valentine generator 3/46 which is only 0.0117 cents sharp of the minimax generator, (11/7)^(1/10).
Valentine is very closely related to Carlos Alpha, the rank one nonoctave temperament of Wendy Carlos, as the generator chain of valentine is the same thing as Carlos Alpha. Indeed, the way Carlos uses Alpha in Beauty in the Beast suggests that she really intended Alpha to be the same thing as valentine, and that it is misdescribed as a rank one temperament. Carlos tells us that "The melodic motions of Alpha are amazingly exotic and fresh, like you've never heard before", and since Alpha lives inside valentine this comment carries over and applies to it if you stick close melodically to generator steps, which is almost impossible not to do since the generator step is so small. MOS of 15, 16, 31 and 46 notes are available to explore these exotic and fresh melodies, or the less exotic ones you might cook up otherwise.
Commas: 1029/1024, 126/125
7-limit: [|1 0 0 0>, |5/2 3/4 0 -3/4>, |17/6 5/12 0 -5/12>, [5/2 -1/4 0 1/4>]
Eigenmonzos: 2, 7/6
9-limit: [|1 0 0 0>, |10/7 6/7 0 -3/7>, |47/21 10/21 0 -5/21>, |20/7 -2/7 0 1/7>]
Eigenmonzos: 2, 9/7
POTE generator: 77.864
Algebraic generator: smaller root of x^2-89x+92, or (89-sqrt(7553))/2, at 77.8616 cents.
Map: [<1 1 2 3|, <0 9 5 -3|]
Generators: 2, 21/20
EDOs: 15, 31, 46, 77, 185, 262
Badness: 0.0311
11-limit[edit]
Commas: 121/120, 126/125, 176/175
[|1 0 0 0 0>, |1 0 0 -9/10 9/10>, |2 0 0 -1/2 1/2>, |3 0 0 3/10 -3/10>, |3 0 0 -7/10 7/10>]
Eigenmonzos: 2, 11/7
Minimax generator: (11/7)^(1/10) = 78.249
POTE generator: 77.881
Algebraic generator: Gontrand2, the smallest positive root of 4x^7-8x^6+5, at 77.9989 cents.
Map: [<1 1 2 3 3|, <0 9 5 -3 7|]
Edos: 15, 31, 46, 77, 108, 185
Badness: 0.0167
See also: Chords of valentine
Dwynwen[edit]
Commas: 91/90, 121/120, 126/125, 176/175
POTE generator: ~21/20 = 78.219
Map: [<1 1 2 3 3 2|, <0 9 5 -3 7 26|]
EDOs: 15, 46
Badness: 0.0235
Lupercalia[edit]
Commas: 66/65, 105/104, 121/120, 126/125
POTE generator: ~22/21 = 77.709
Map: [<1 1 2 3 3 3|, <0 9 5 -3 7 11|]
EDOs: 15, 31, 108, 139
Badness: 0.0213
Valentino[edit]
Commas: 121/120, 126/125, 176/175, 196/195
POTE generator: ~22/21 = 77.958
Map: [<1 1 2 3 3 5|, <0 9 5 -3 7 -20|]
EDOs: 15, 31, 46, 77, 431
Badness: 0.0207
Semivalentine[edit]
Commas: 121/120, 126/125, 169/168, 176/175
POTE generator: ~22/21 = ~21/20 = 77.839
Map: [<2 2 4 6 6 7|, <0 9 5 -3 7 3|]
EDOs: 16, 30, 46, 62, 108ef
Badness: 0.0327
Alicorn temperament[edit]
Commas: 126/125, 10976/10935
POTE generator: ~28/27 = 62.278
Map: [<1 2 3 4|, <0 -8 -13 -23|]
Wedgie: <<8 13 23 2 14 17||
EDOs: 19, 58, 77, 96
Badness: 0.0409
11-limit[edit]
Commas: 126/125, 540/539, 896/891
POTE generator: ~28/27 = 62.101
Map: [<1 2 3 4 3|, <0 -8 -13 -23 9|]
EDOs: 19, 58
Badness: 0.0392
13-limit[edit]
Commas: 126/125, 144/143, 196/195, 676/675
POTE generator: ~28/27 = 62.119
Map: [<1 2 3 4 3 5|, <0 -8 -13 -23 9 -25|]
EDOs: 19, 58
Badness: 0.0237
Camahueto[edit]
Commas: 126/125, 10976/10935, 385/384
POTE generator: ~28/27 = 62.431
Map: [<1 2 3 4 2|, <0 -8 -13 -23 28|]
EDOs: 19, 58, 77, 96
Badness: 0.0659
13-limit[edit]
Commas: 126/125, 196/195, 385/384, 676/675
POTE generator: ~28/27 = 62.434
Map: [<1 2 3 4 2 5|, <0 -8 -13 -23 28 -25|]
EDOs: 19, 58, 77
Badness: 0.0362
Casablanca temperament[edit]
Aside from 126/125, casablanca tempers out the no-threes comma 823543/819200 and also 589824/588245, and may also be described by its wedgie, <<19 14 4 -22 -47 -30||, or as 31&73. 74/135 or 91/166 supply good tunings for the generator, and 20 and 31 note MOS are available.
It may not seem like casablanca has much to offer, but peering under the hood a bit harder suggests otherwise. For one thing, the 35/24 generator is particularly interesting; like 15/14 and 21/20, it represents an interval between one vertex of a hexany and the opposite vertex, which makes it particularly simple with regard to the cubic lattice of tetrads. For another, if we add 385/384 to the list of commas, 35/24 is identified with 16/11, and casablanca is revealed as an 11-limit temperament with a very low complexity for 11 and not too high a one for 7; we might compare 1, 4, 14, 19, the generator steps to 11, 7, 5 and 3 respectively, with 1, 4, 10, 18, the steps to 3, 5, 7 and 11 in 11-limit meantone.
Commas: 126/125, 589824/588245
POTE generator: ~35/24 = 657.818
Map: [<1 12 10 5|, <0 -19 -14 -4|]
EDOs: 9bc, 11b, 31, 135c, 166c
Badness: 0.1012
11-limit[edit]
Commas: 126/125, 385/384, 2420/2401
POTE generator: ~16/11 = 657.923
Map: [<1 12 10 5 4|, |0 -19 -14 -4 -1>]
EDOs: 9bc, 11b, 31, 259bce, 549bce
Badness: 0.0623
Marrakesh[edit]
Commas: 126/125, 176/175, 14641/14580
POTE generator: ~22/15 = 657.791
Map: [<1 12 10 5 21|, |0 -19 -14 -4 -32>]
EDOs: 9bce, 11be, 20be, 31, 42e, 73
Badness: 0.0405
13-limit[edit]
126/125, 176/175, 196/195, 17303/17280
POTE generator: ~22/15 = 657.756
Map: [<1 12 10 5 21 -10|, |0 -19 -14 -4 -32 25>]
EDOs: 31, 73, 104c, 135c, 239cf
Badness: 0.0408
Murakuc[edit]
Commas: 126/125, 144/143, 176/175, 1540/1521
POTE generator: ~22/15 = 657.700
Map: [<1 12 10 5 21 7|, |0 -19 -14 -4 -32 -6>]
EDOs: 31, 73f, 104cf
Badness: 0.0414
Nusecond temperament[edit]
Nusecond tempers out 2430/2401 and 16875/16807 in addition to 126/125, and may be described as 31&70, or in terms of its wedgie as <<11 13 17 -5 -4 3||. It has a neutral second generator of 49/45, two of which make up a 6/5 minor third since 2430/2401 is tempered out. 31edo can be used as a tuning, or 132edo with a val which is the sum of the patent vals for 31 and 101. Because 49/45 is flat of 12/11 by only 540/539, nusecond is more naturally thought of as an 11-limit temperament with a combined 12/11 and 11/10 as a generator, tempering out 99/98, 121/120 and 540/539. Because of all the neutral seconds, an exotic Middle Eastern sound comes naturally to nusecond. MOS of 15, 23, or 31 notes are enough to give fuller effect to the harmony, but the 8-note MOS might also be considered from the melodic point of view.
5-limit[edit]
Comma: 51018336/48828125
POTE generator: ~3125/2916 = 154.523
Map: [<1 3 4|, <0 -11 -13|]
EDOs: 8, 23, 31, 70, 101, 132c, 233c, 365bc
Badness: 0.4665
7-limit[edit]
Commas: 126/125, 2430/2401
7-limit minimax
[|1 0 0 0>, |-5/13 0 11/13 0>, |0 0 1 0>, |-3/13 0 17/13 0>]
Eigenmonzos: 2, 5
9-limit minimax
[|1 0 0 0>, |0 1 0 0>, |5/11 13/11 0 0>, |4/11 17/11 0 0>]
Eigenmonzos: 2, 3
POTE generator: 154.579
Map: [<1 3 4 5|, <0 -11 -13 -17|]
Generators: 2, 49/45
EDOs: 7, 8, 31, 101, 132, 163
Badness: 0.0504
11-limit[edit]
Commas: 99/98, 121/120, 126/125
11-limit minimax
[|1 0 0 0 0>, |19/10 11/5 0 0 -11/10>, |27/10 13/5 0 0 -13/10>, |33/10 17/5 0 0 -17/10>, |19/5 12/5 0 0 -6/5>]
Eigenmonzos: 2, 11/9
POTE generator: ~11/10 = 154.645
Algebraic generator: positive root of 15x^2-10x-7, or (5+sqrt(130))/15, at 154.6652 cents. The recurrence converges very quickly.
Map: [<1 3 4 5 5|, <0 -11 -13 -17 -12|]
Generators: 2, 11/10
EDOs: 7, 8, 31, 101, 194
Badness: 0.0256
13-limit[edit]
Commas: 66/65 99/98 121/120 126/125
POTE generator: ~11/10 = 154.478
Map: [<1 3 4 5 5 5|, <0 -11 -13 -17 -12 -10|]
EDOs: 31, 70f, 101f
Badness: 0.0233
Thuja[edit]
Commas: 126/125, 65536/64827
POTE generator: ~175/128 = 558.605
Map: [<1 8 5 -2|, <0 -12 -5 9|]
Wedgie: <<12 5 -9 -20 -48 -35||
EDOs: 15, 43, 58
Badness: 0.0884
11-limit[edit]
Commas: 126/125, 176/175, 1344/1331
POTE generator: ~11/8 = 558.620
Map: [<1 8 5 -2 4|, <0 -12 -5 9 -1|]
EDOs: 13, 15, 28, 43, 58
Badness: 0.0331
13-limit[edit]
Commas: 126/125, 144/143, 176/175, 364/363
POTE generator: ~11/8 = 558.589
Map: [<1 8 5 -2 4 16|, <0 -12 -5 9 -1 -23|]
EDOs: 15, 43, 58
Badness: 0.0228
29-limit[edit]
POTE generator: ~11/8 = 558.520
Map: [<1 -4 0 7 3 -7 12 1 5 3|, <0 12 5 -9 1 23 -17 7 -1 4|]
EDOs: 43, 58
(Raisin d'etre of this entry being the simple and accurate approximation of factor twenty-nine, the 2.5.11.21.29 subgroup being of especially good accuracy and simplicity.)
Cypress[edit]
Comma: 258280326/244140625
POTE generator: ~4374/3125 = 541.726
Map: [<1 7 10|, <0 -12 -17|]
EDOs: 20c, 31, 113c, 144c, 175c, 381bc
Badness: 0.8166
7-limit[edit]
Commas: 126/125, 19683/19208
POTE generator: ~135/98 = 541.828
Map: [<1 7 10 15|, <0 -12 -17 -27|]
Wedgie: <<12 17 27 -1 9 15||
EDOs: 31, 206bcd, 237bcd, 268bcd, 299bcd, 330bcd
Badness: 0.0998
11-limit[edit]
Commas: 99/98, 126/125, 243/242
POTE generator: ~15/11 = 541.772
Map: [<1 7 10 15 17|, <0 -12 -17 -27 -30|]
EDOs: 31, 144cd, 175cd, 206bcde, 237bcde
Badness: 0.0427
13-limit[edit]
Commas: 66/65, 99/98. 126/125, 243/242
POTE generator: ~15/11 = 541.778
Map: [<1 7 10 15 17 15|, <0 -12 -17 -27 -30 -25|]
EDOs: 31
Badness: 0.0378
Bisemidim[edit]
Commas: 126/125, 118098/117649
POTE generator: ~35/27 = 455.445
Map: [<2 1 2 2|, <0 9 11 15|]
Wedgie: <<18 22 30 -7 -3 8||
EDOs: 50, 58, 108, 166c, 408c
Badness: 0.0978
11-limit[edit]
Commas: 126/125, 540/539, 1344/1331
POTE generator: ~35/27 = 455.373
Map: [<2 1 2 2 5|, <0 9 11 15 8|]
EDOs: 50, 58, 108, 166ce, 224ce
Badness: 0.0412
13-limit[edit]
Commas: 126/125, 144/143, 196/195, 364/363
POTE generator: ~35/27 = 455.347
Map: [<2 1 2 2 5 5|, <0 9 11 15 8 10|]
EDOs: 50, 58, 166cef, 224cef
Badness: 0.0239
Vines[edit]
Commas: 126/125, 84035/82944
POTE generator: ~6/5 = 312.602
Map: [<2 7 8 8|, <0 -8 -7 -5|]
EDOs: 4, 42, 46, 96d, 142d, 238d
Badness: 0.0780
11-limit[edit]
Commas: 126/125, 385/384, 2401/2376
POTE generator: ~6/5 = 312.601
Map: [<2 7 8 8 5|, <0 -8 -7 -5 4|]
EDOs: 4, 42, 46, 96d, 142d, 238d
Badness: 0.0445
13-limit[edit]
Commas: 126/125, 196/195, 364/363, 385/384
POTE generator: ~6/5 = 312.564
Map: [<2 7 8 8 5 5|, <0 -8 -7 -5 4 5|]
EDOs: 4, 42, 46, 96d, 238df
Badness: 0.0297
Kumonga[edit]
Comma: 1289945088/1220703125
POTE generator: ~144/125 = 222.912
Map: [<1 4 4|, <0 -13 -9|]
EDOs: 16, 27, 43, 70, 183c
Badness: 0.7296
7-limit[edit]
Commas: 126/125, 12288/12005
POTE generator: ~8/7 = 222.797
Map: [<1 4 4 3|, <0 -13 -9 -1|]
Wedgie: <<13 9 1 -16 -35 -23||
EDOs: 16, 27, 43, 70, 167cd
Badness: 0.0875
11-limit[edit]
Commas: 126/125, 176/175, 864/847
POTE generator: ~8/7 = 222.898
Map: [<1 4 4 3 7|, <0 -13 -9 -1 -19|]
EDOs: 16, 27e, 43, 70e
Badness: 0.0433
13-limit[edit]
Commas: 78/77, 126/125, 144/143, 176/175
POTE generator: ~8/7 = 222.961
Map: [<1 4 4 3 7 5|, <0 -13 -9 -1 -19 -7|]
EDOs: 16, 27e, 43, 70e, 113cde
Badness: 0.0289
Amigo[edit]
Commas: 126/125, 2097152/2083725
POTE generator: ~5/4 = 391.094
Map: [<1 9 3 -10|, <0 -11 -1 19|]
EDOs: 43, 46, 89, 135c, 359c
Badness: 0.1109
11-limit[edit]
Commas: 126/125, 176/175, 16384/16335
POTE generator: ~5/4 = 391.075
Map: [<1 9 3 -10 -8|, <0 -11 -1 19 17|]
EDOs: 43, 46, 89, 135c, 224c
Badness: 0.0434
13-limit[edit]
Commas: 126/125, 169/168, 176/175, 364/363
POTE generator: ~5/4 = 391.072
Map: [<1 9 3 -10 -8 1|, <0 -11 -1 19 17 4|]
EDOs: 43, 46, 89, 135cf, 224cf
Badness: 0.0307