Proposed names for rank 2 temperaments
Here is a list of some names that have been proposed for rank 2 temperaments. The name or names of the temperament is followed by the generator mapping, which represents the number of periods and generators of the temperament for each of the prime intervals (2, 3, 5 etc.)
See also pergen names.
One period per octave[edit]
father [<1, 2, 2], <0, -1, 1]>
- mother [<1, 2, 2, 2], <0, -1, 1, 2]>
- father [<1, 2, 2, 4], <0, -1, 1, -3]>
mavila [<1, 2, 1], <0, -1, 3]>
- pelogic [<1, 2, 1, 1], <0, -1, 3, 4]>
- armodue [<1, 2, 1, 5], <0, -1, 3, -5]>
- mavila [<1, 2, 1, -2], <0, -1, 3, 11]>
- hornbostel [<1, 2, 1, 8], <0, -1, 3, -12]>
meantone [<1, 2, 4], <0, -1, -4]>
- dominant [<1, 2, 4, 2], <0, -1, -4, 2]>
- arnold [<1, 2, 4, 2, 3], <0, -1, -4, 2, 1]>
- dominant [<1, 2, 4, 2, 1], <0, -1, -4, 2, 6]>
- domineering [<1, 2, 4, 2, 6], <0, -1, -4, 2, -6]>
- dominatrix [<1, 2, 4, 2, 6, 5], <0, -1, -4, 2, -6, -3]>
- sharptone [<1, 2, 4, 4], <0, -1, -4, -3]>
- meanertone [<1, 2, 4, 4, 3], <0, -1, -4, -3, 1]>
- flattone [<1, 2, 4, -1], <0, -1, -4, 9]>
- flattone [<1, 2, 4, -1, 6], <0, -1, -4, 9, -6]>
- meantone [<1, 2, 4, 7], <0, -1, -4, -10]>
- meanenneadecal [<1, 2, 4, 7, 6], <0, -1, -4, -10, -6]>
- meanpop [<1, 2, 4, 7, -2], <0, -1, -4, -10, 13]>
- meantone [<1, 2, 4, 7, 11], <0, -1, -4, -10, -18]>
helmholtz [<1, 2, -1], <0, -1, 8]>
- schism [<1, 2, -1, 2], <0, -1, 8, 2]>
- garibaldi [<1, 2, -1, -3], <0, -1, 8, 14]>
- garibaldi [<1, 2, -1, -3, 13], <0, -1, 8, 14, -23]>
- garibaldi [<1, 2, -1, -3, 13, 12], <0, -1, 8, 14, -23, -20]>
- cassandra [<1, 2, -1, -3, -4], <0, -1, 8, 14, 18]>
- cassandra [<1, 2, -1, -3, -4, -5], <0, -1, 8, 14, 18, 21]>
- garibaldi [<1, 2, -1, -3, 13], <0, -1, 8, 14, -23]>
- grackle [<1, 2, -1, -8], <0, -1, 8, 26]>
- pontiac, infraschismic [<1, 2, -1, 19], <0, -1, 8, -39]>
superpyth [<1, 2, 6], <0, -1, -9]>
- superpyth [<1, 2, 6, 2], <0, -1, -9, 2]>
- superpyth [<1, 2, 6, 2, 10], <0, -1, -9, 2, -16]>
- suprapyth [<1, 2, 6, 2, 1], <0, -1, -9, 2, 6]>
quasisuper [<1, 2, -3, 2], <0, -1, 13, 2]>
leapday [<1, 2, 11, 9, 8, 7], <0, -1, -21, -15, -11, -8]>
kwai [<1, 2, 16, 14], <0, -1, -33, -27]>
- kwai [<1, 2, 16, 14, -4], <0, -1, -33, -27, 18]>
undecental [<1, 2, -13, -15], <0, -1, 37, 43]>
counterschismic [<1, 2, 21], <0, -1, -45]>
dicot [<1, 1, 2], <0, 2, 1]>
- dicot [<1, 1, 2, 2], <0, 2, 1, 3]>
- sharp [<1, 1, 2, 1], <0, 2, 1, 6]>
mohajira semififths[<1, 1, 0, 6], <0, 2, 8, -11]>
- mohajira <1, 1, 0, 6, 2], <0, 2, 8, -11, 5]>
maqamic [<1, 1, 0, 4, 2], <0, 2, 8, -4, 5]>
- maqamic <1, 1, 0, 4, 2, 4], <0, 2, 8, -4, 5, -1]>
beatles [<1, 1, 5, 4], <0, 2, -9, -4]>
karadeniz [<1, 1, 7, 11, 2], <0, 2, -16, -28, 5]>
hemififths [<1, 1, -5, -1], <0, 2, 25, 13]>
bug [<1, 2, 3], <0, -2, -3]>
- beep [<1, 2, 3, 3], <0, -2, -3, -1]>
- pentoid [<1, 2, 3, 3, 3], <0, -2, -3, -1, 2]>
superpelog [<1, 2, 1, 3], <0, -2, 6, -1]>
godzilla [<1, 2, 4, 3], <0, -2, -8, -1]>
monzismic [<1, 2, 10], <0, -2, -37]>
gidorah [<1, 1, 2, 3], <0, 3, 2, -1]>
penta [<1, 1, 2, 2], <0, 3, 2, 4]>
laconic [<1, 1, 1], <0, 3, 7]>
gorgo [<1, 1, 1, 3], <0, 3, 7, -1]
- gorgo [<1 1 1 3 1|, <0 3 7 -1 13|>
- gorgo [<1 1 1 3 1 2|, <0 3 7 -1 13 9|>
- spartan [<1 1 1 3 5|, <0 3 7 -1 -8|>
mothra, cynder [<1, 1, 0, 3], <0, 3, 12, -1]>
- mothra, cynder [<1, 1, 0, 3, 5], <0, 3, 12, -1, -8]>
rodan [<1, 1, -1, 3], <0, 3, 17, -1]>
- rodan[<1, 1, -1, 3, 6], <0, 3, 17, -1, -13]>
- rodan [<1, 1, -1, 3, 6, 8], <0, 3, 17, -1, -13, -22]>
- aerodactyl [<1, 1, -1, 3, 6, -1], <0, 3, 17, -1, -13, 24]>
guiron [<1, 1, 7, 3], <0, 3, -24, -1]>
porcupine [<1, 2, 3], <0, -3, -5]>
- hystrix [<1, 2, 3, 3], <0, -3, -5, -1]>
- porcupine [<1, 2, 3, 2], <0, -3, -5, 6]>
- porcupine [<1, 2, 3, 2, 4], <0, -3, -5, 6, -4]>
- opossum, pentadecimal [<1, 2, 3, 4], <0, -3, -5, -9]>
- opossum [<1, 2, 3, 4, 4], <0, -3, -5, -9, -4]>
- coendou [<1, 2, 3, 1, 4, 3], <0, -3, -5, 13, -4, 5]>
- ammonite [<1, 5, 8, 10], <0, -9, -15, -19]>
- porcupinefish [<1, 2, 3, 2, 4, 6], <0, -3, -5, 6, -4, -17]>
triton [<1, 3, -1, -1], <0, -3, 7, 8]>
liese, gawel [<1, 3, 8, 8], <0, -3, -12, -11]>
tricot [<1, 3, 16], <0, -3, -29]>
tetracot [<1, 1, 1], <0, 4, 9]>
- monkey [<1, 1, 1, 5], <0, 4, 9, -15]>
- bunya [<1, 1, 1, -1], <0, 4, 9, 26]>
vulture [<1, 0, -6], <0, 4, 21]>
- buzzard [<1, 0, -6, 4], <0, 4, 21, -3]>
- buzzard [<1, 0, -6, 4, -12, -7], <0, 4, 21, -3, 39, 27]>
sesquiquartififths [<1, 1, 7, 5], <0, 4, -32, -15]>
semihemififths [<1, 1, -5, -1, 8], <0, 4, 50, 26, -31]>
sidi [<1, 3, 3, 6], <0, -4, -2, -9]>
negri [<1, 2, 2], <0, -4, 3]>
- negri [<1, 2, 2, 3], <0, -4, 3, -2]>
- negri [<1 2 2 3 4|, <0 -4 3 -2 -5|]
- negri [<1 2 2 3 4 4|, <0 -4 3 -2 -5 -3|]
- negril [<1 2 2 3 2|, <0 -4 3 -2 14|]
- negril [<1, 2, 2, 3, 2, 4], <0, -4, 3, -2, 14, -3]>
- negri [<1 2 2 3 4|, <0 -4 3 -2 -5|]
sentinel [<1, 3, -3, 6], <0, -4, 15, -9]>
squares [<1, 3, 8, 6], <0, -4, -16, -9]>
magic [<1, 0, 2], <0, 5, 1]>
- muggles [<1, 0, 2, 5], <0, 5, 1, -7]>
- magic [<1, 0, 2, -1], <0, 5, 1, 12]>
- magic [<1, 0, 2, -1, 6], <0, 5, 1, 12, -8]>
passion [<1, 2, 2], <0, -5, 4]>
- passion [<1, 2, 2, 2], <0, -5, 4, 10]>
ripple [<1, 2, 3], <0, -5, -8]>
- ripple [<1, 2, 3, 3], <0, -5, -8, -2]>
tritonic [<1, 4, -3, -3], <0, -5, 11, 12]>
- tritonic [<1, 4, -3, -3, 2], <0, -5, 11, 12, 3]>
amity [<1, 3, 6], <0, -5, -13]>
- amity [<1, 3, 6, -2], <0, -5, -13, 17]>
- hitchcock, amity [<1, 3, 6, -2, 6], <0, -5, -13, 17, -9]>
- hitchcock [<1, 3, 6, -2, 6, 2], <0, -5, -13, 17, -9, 6]>
- hitchcock, amity [<1, 3, 6, -2, 6], <0, -5, -13, 17, -9]>
gravity [<1, 5, 12], <0, -6, -17]>
hanson [<1, 0, 1], <0, 6, 5]>
- keemun [<1, 0, 1, 2], <0, 6, 5, 3]>
- keemun [<1, 0, 1, 2, 4], <0, 6, 5, 3, -2]>
- catakleismic [<1, 0, 1, -3], <0, 6, 5, 22]>
- catakleismic [<1, 0, 1, -3, 9], <0, 6, 5, 22, -21]>
- catakleismic [<1, 0, 1, -3, 9, 0], <0, 6, 5, 22, -21, 14]>
- catakleismic [<1, 0, 1, -3, 9], <0, 6, 5, 22, -21]>
- countercata [<1, 0, 1, 11], <0, 6, 5, -31]>
ampersand [<1, 1, 3], <0, 6, -7]>
- miracle[<1, 1, 3, 3], <0, 6, -7, -2]>
- miracle [<1, 1, 3, 3, 2], <0, 6, -7, -2, 15]>
marvo [<1, -1, -5, -17], <0, 6, 17, 46]>
nautilus [<1, 2, 3, 3], <0, -6, -10, -3]>
orson [<1, 0, 3], <0, 7, -3]>
- orwell [<1, 0, 3, 1], <0, 7, -3, 8]>
- orwell [<1, 0, 3, 1, 3], <0, 7, -3, 8, 2]>
- orwell [<1, 0, 3, 1, 3, 8], <0, 7, -3, 8, 2, -19]>
- blair [<1, 0, 3, 1, 3, 3], <0, 7, -3, 8, 2, 3]>
- winston [<1, 0, 3, 1, 3, 1], <0, 7, -3, 8, 2, 12]>
- doublethink [<1, 0, 3, 1, 3, 2], <0, 14, -6, 16, 4, 15]>
- orwell [<1, 0, 3, 1, 3], <0, 7, -3, 8, 2]>
sensi [<1, -1, -1], <0, 7, 9]>
- sensi [<1, -1, -1, -2], <0, 7, 9, 13]>
sensor [<1, -1, -1, -2, 9], <0, 7, 9, 13, -15]>
- sensor [<1, -1, -1, -2, 9, 0], <0, 7, 9, 13, -15, 10]>
sensis [<1 6 8 11 6|, <0 -7 -9 -13 -4|]
- sensis [<1 6 8 11 6 10|, <0 -7 -9 -13 -4 -10|]
sensus [<1 6 8 11 23|, <0 -7 -9 -13 -31|]
- sensus [<1 6 8 11 23 10|, <0 -7 -9 -13 -31 -10|]
roman [<1, 4, 3, -1, 0, 3], <0, -7, -2, 11, 10, 2]>
octacot [<1, 1, 1, 2], <0, 8, 18, 11]>
würschmidt [<1, -1, 2], <0, 8, 1]>
- worschmidt [<1, -1, 2, 7], <0, 8, 1, -13]>
- wurschmidt [<1, -1, 2, -3], <0, 8, 1, 18]>
- whirrschmidt [<1, 7, 3, 38], <0, -8, -1, -52]>
valentine [<1, 1, 2], <0, 9, 5]>
- valentine[<1, 1, 2, 3], <0, 9, 5, -3]>
- valentine [<1, 1, 2, 3, 3], <0, 9, 5, -3, 7]>
- valentino [<1, 1, 2, 3, 3, 5], <0, 9, 5, -3, 7, -20]>
- dwynwen [<1, 1, 2, 3, 3, 2], <0, 9, 5, -3, 7, 26]>
- lupercalia [<1 1 2 3 3 3|, <0 9 5 -3 7 11|]
- valentine [<1, 1, 2, 3, 3], <0, 9, 5, -3, 7]>
escapade [<1, 2, 2], <0, -9, 7]>
- escapade [<1, 2, 2, 3], <0, -9, 7, -4]>
- escaped [<1, 2, 2, 4], <0, -9, 7, -26]>
superkleismic [<1, 4, 5, 2], <0, -9, -10, 3]>
- superkleismic [<1, 4, 5, 2, 4], <0, -9, -10, 3, -2]>
myna [<1, -1, 0, 1], <0, 10, 9, 7]>
- myna [<1, -1, 0, 1, -3], <0, 10, 9, 7, 25]>
- myna [<1, -1, 0, 1, -3, 5], <0, 10, 9, 7, 25, -5]>
sycamore [<1, 1, 2], <0, 11, 6]>
- sycamore [<1, 1, 2, 2], <0, 11, 6, 15]>
septimin [<1, 4, 1, 5], <0, -11, 6, -10]>
nusecond [<1, 3, 4, 5], <0, -11, -13, -17]>
quartonic [<1, 2, 3, 3], <0, -11, -18, -5]>
hemikleismic [<1, 0, 1, 4], <0, 12, 10, -9]>
clyde [<1, 6, 6, 12], <0, -12, -10, -25]>
bohpier [<1, 0, 0, 0], <0, 13, 19, 23]>
gammic [<1, 1, 2], <0, 20, 11]>
- gammic [<1, 1, 2, 0], <0, 20, 11, 96]>
neptune [<1, 21, 13, 13], <0, -40, -22, -21]>
pluto [<1, 5, 15, 15, 2], <0, 7, 26, 25, -3]>
twothirdtonic [<1, 3, 2, 4, 4], <0, -13, 3, -11, -5]>
- twothirdtonic [<1, 3, 2, 4, 4, 5], <0, -13, 3, -11, -5, -12]>
slender [<1, 2, 2, 3], <0, -13, 10, -6]>
- slender [<1, 2, 2, 3, 4], <0, -13, 10, -6, -17]>
parakleismic [<1, 5, 6], <0, -13, -14]>
- parakleismic [<1, 5, 6, 12], <0, -13, -14, -35]>
fortune [<1, -1, 11], <0, 14, -47]>
hemithirds, luna [<1, 4, 2], <0, -15, 2]>
- hemithirds[<1, 4, 2, 2], <0, -15, 2, 5]>
- hemithirds [<1, 4, 2, 2, 7], <0, -15, 2, 5, -22]>
hemiwürschmidt [<1, -1, 2, 2], <0, 16, 2, 5]>
- hemiwürschmidt [<1, -1, 2, 2, -3], <0, 16, 2, 5, 40]>
semisept [<1, -5, 0, -3], <0, 17, 6, 15]>
vavoom [<1, 0, 4], <0, 17, -18]>
minortone [<1, -1, -3], <0, 17, 35]>
- mitonic [<1, -1, -3, 6], <0, 17, 35, -21]>
casablanca [<1, -7, -4, 1], <0, 19, 14, 4]>
- casablanca [<1, -7, -4, 1, 3], <0, 19, 14, 4, 1]>
tertiaseptal [<1, 3, 2, 3], <0, -22, 5, -3]>
grendel, voodoo [<1, 9, 2, 7], <0, -23, 1, -13]>
gamera [<1, 6, 10, 3], <0, -23, -40, -1]>
astro [<1, 5, 1], <0, -31, 12]>
semihemiwürschmidt [<1, 15, 4, 7, 24], <0, -32, -4, -10, -49]>
whoosh [<1, 17, 14], <0, -33, -25]>
yarman [<1, 2, 3, 4, 4], <0, -33, -54, -95, -43]>
senior [<1, 11, 19], <0, -35, -62]>
raider [<1, -9, -26], <0, 37, 99]>
supermajor [<1, 15, 19, 30], <0, -37, -46, -75]>
quasiorwell [<1, -7, 3, 1], <0, 38, -3, 8]>
semigamera [<1, 6, 10, 3, 12], <0, -46, -80, -2, -89]>
gross [<1, -2, 4], <0, 47, -22]>
pirate [<1, -6, 0], <0, 49, 15]>
egads [<1, 15, 16], <0, -51, -52]>
avila [<1, 1, -1], <0, 1, 6]>
mabila [<1, 6, 1], <0, -10, 3]>
pycnic [<1, 3, -1, 8], <0, -3, 7, -11]>
enipucrop [<1, 2, 2], <0, -3, 2]>
Two periods per octave[edit]
srutal [<2, 3, 5], <0, 1, -2]>
- pajara [<2, 3, 5, 6], <0, 1, -2, -2]>
- pajaric [<2, 3, 5, 6, 7], <0, 1, -2, -2, 0]>
- pajarous [<2, 3, 5, 6, 6], <0, 1, -2, -2, 5]>
- pajara [<2, 3, 5, 6, 8], <0, 1, -2, -2, -6]>
- diaschismic [<2, 3, 5, 7], <0, 1, -2, -8]>
- diaschismic [<2, 3, 5, 7, 9, 10], <0, 1, -2, -8, -12, -15]>
- keen [<2, 3, 5, 4], <0, 1, -2, 9]>
supersharp [<2, 3, 4], <0, 1, 3]>
- octokaidecal [<2, 3, 4, 5], <0, 1, 3, 3]>
bipelog [<2, 3, 5, 6], <0, 1, -3, -3]>
injera [<2, 3, 4, 5], <0, 1, 4, 4]>
- injera [<2, 3, 4, 5, 6], <0, 1, 4, 4, 6]>
bischismic [<2, 3, 6, 9], <0, 1, -8, -20]>
shrutar [<2, 3, 5, 5], <0, 2, -4, 7]>
- shrutar [<2, 3, 5, 5, 7], <0, 2, -4, 7, -1]>
- srutar [<2, 3, 5, 5, 7, 8], <0, 2, -4, 7, -1, -7]>
- shrutar [<2, 3, 5, 5, 7, 6], <0, 2, -4, 7, -1, 16]>
echidna [<2, 1, 9, 2], <0, 3, -6, 5]>
- echidna [<2, 1, 9, 2, 12], <0, 3, -6, 5, -7]>
decimal [<2, 4, 5, 6], <0, -2, -1, -1]>
Semihemi [<2, 4, 15, 11, 21], <0, -2, -25, -13, -34]>
lemba [<2, 2, 5, 6], <0, 3, -1, -1]>
hedgehog [<2, 4, 6, 7], <0, -3, -5, -5]>
doublewide [<2, 5, 6], <0, -4, -3]>
- doublewide[<2, 5, 6, 7], <0, -4, -3, -3]>
- doublewide [<2, 5, 6, 7, 6], <0, -4, -3, -3, 2]>
sesquiquartififths [<2, 2, 14, 10], <0, 4, -32, -15]>
hemiamity [<2, 1, -1, 13, 13], <0, 5, 13, -17, -14]>
wizard [<2, 1, 5, 2], <0, 6, -1, 10]>
- wizard [<2, 1, 5, 2, 8], <0, 6, -1, 10, -3]>
unidec [<2, 5, 8, 5], <0, -6, -11, 2]>
- unidec [<2, 5, 8, 5, 6], <0, -6, -11, 2, 3]>
- hendec [<2, 5, 8, 5, 6, 8], <0, -6, -11, 2, 3, -2]>
harry [<2, 4, 7, 7], <0, -6, -17, -10]>
vishnu [<2, 4, 5], <0, -7, -3]>
- vishnu [<2, 4, 5, 10], <0, -7, -3, -37]>
kwazy [<2, 1, 6], <0, 8, -5]>
- bisupermajor [<2, 1, 6, 1, 8], <0, 8, -5, 17, -4]>
semiparakleismic [<2, -3, -2, -11, -4], <0, 13, 14, 35, 23]>
hemigamera [<2, 12, 20, 6], <0, -23, -40, -1]>
- hemigamera [<2, 12, 20, 6, 5], <0, -23, -40, -1, 5]>
abigail [<2, 7, 13, -1, 1, -2], <0, -11, -24, 19, 17, 27]>
Three periods per octave[edit]
augmented [<3, 5, 7], <0, -1, 0]>
- augene, tripletone [<3, 5, 7, 8], <0, -1, 0, 2]>
- augene, tripletone [<3, 5, 7, 8, 10], <0, -1, 0, 2, 2]>
- august [<3, 5, 7, 9], <0, -1, 0, -2]>
misty [<3, 5, 6], <0, -1, 4]>
- misty [<3, 5, 6, 6], <0, -1, 4, 10]>
term [<3, 5, 5, 4], <0, -1, 8, 18]>
semiaug [<3, 5, 7, 9], <0, -2, 0, -5]>
tritikleismic [<3, 6, 8, 8], <0, -6, -5, 2]>
mutt [<3, 5, 7, 8], <0, -7, -1, 12]>
ternary [<3, 5, 7, 8], <3, 5, 7, 9]>
Four or more periods per octave[edit]
diminished [<4, 6, 9], <0, 1, 1]>
- diminished [<4, 6, 9, 11], <0, 1, 1, 1]>
- diminished [<4, 6, 9, 11, 14], <0, 1, 1, 1, 0]>
- demolished [<4, 6, 9, 11, 13], <0, 1, 1, 1, 3]>
blackwood [<5, 8, 12], <0, 0, -1]>
- blacksmith [<5, 8, 12, 14], <0, 0, -1, 0]>
hexe [<6, 10, 14, 17], <0, -1, 0, 0]>
jamesbond [<7, 11, 16, 20], <0, 0, 0, -1]>
- jamesbond [<7, 11, 16, 20, 24], <0, 0, 0, -1, 0]>
whitewood [<7, 11, 16], <0, 0, 1]>
octoid [<8, 13, 19, 23, 28], <0, -3, -4, -5, -3]>
ennealimmal [<9, 15, 22], <0, -2, -3]>
- ennealimmal [<9, 15, 22, 26], <0, -2, -3, -2]>
- ennealimmal [<9, 15, 22, 26, 37], <0, -2, -3, -2, -16]>
decoid [<10 0 47 36|, <0 2 -3 -1|]
- decoid [<10 0 47 36 98|, <0 2 -3 -1 -8|]
- decoid [<10 0 47 36 98 37|, <0 2 -3 -1 -8 0|]
hendecatonic [<11, 17, 26, 30], <0, 1, -1, 2]>
catler [<12, 19, 28, 34], <0, 0, 0, -1]>
compton [<12, 19, 28], <0, 0, -1]>
- compton, waage [<12, 19, 28, 34], <0, 0, -1, -2]>
- compton, duodecimal [<12, 19, 28, 34, 42], <0, 0, -1, -2, -3]>
duodecim [<12, 19, 28, 34, 42], <0, 0, 0, 0, -1]>
atomic [<12, 19, 28], <0, 1, -7]>
hemiennealimmal [<18, 28, 41, 50, 62], <0, 2, 3, 2, 1]>
enneadecal [<19, 30, 44], <0, 1, 1]>
- enneadecal [<19, 30, 44, 53], <0, 1, 1, 3]>
undevigintone [<19, 30, 44, 53, 66], <0, 0, 0, 0, -1]>
icosidillic [<22, 35, 51, 62, 76], <0, -1, 1, -2, 1]>
vigintiduo [<22, 35, 51, 62, 76], <0, 0, 0, 0, 1]>
mystery [<29, 46, 67, 81, 100, 107], <0, 0, 1, 1, 1, 1]>
hemienneadecal [<38, 60, 88, 106, 131], <0, 1, 1, 3, 2]>