Proposed names for rank 2 temperaments

From TD Xenharmonic Wiki
Jump to navigation Jump to search

Here is a list of some names that have been proposed for rank 2 temperaments. The name or names of the temperament is followed by the generator mapping, which represents the number of periods and generators of the temperament for each of the prime intervals (2, 3, 5 etc.)

See also pergen names.

One period per octave[edit]

father [<1, 2, 2], <0, -1, 1]>

  • mother [<1, 2, 2, 2], <0, -1, 1, 2]>
  • father [<1, 2, 2, 4], <0, -1, 1, -3]>

mavila [<1, 2, 1], <0, -1, 3]>

  • pelogic [<1, 2, 1, 1], <0, -1, 3, 4]>
  • armodue [<1, 2, 1, 5], <0, -1, 3, -5]>
  • mavila [<1, 2, 1, -2], <0, -1, 3, 11]>
  • hornbostel [<1, 2, 1, 8], <0, -1, 3, -12]>

meantone [<1, 2, 4], <0, -1, -4]>

  • dominant [<1, 2, 4, 2], <0, -1, -4, 2]>
    • arnold [<1, 2, 4, 2, 3], <0, -1, -4, 2, 1]>
    • dominant [<1, 2, 4, 2, 1], <0, -1, -4, 2, 6]>
    • domineering [<1, 2, 4, 2, 6], <0, -1, -4, 2, -6]>
      • dominatrix [<1, 2, 4, 2, 6, 5], <0, -1, -4, 2, -6, -3]>
  • sharptone [<1, 2, 4, 4], <0, -1, -4, -3]>
    • meanertone [<1, 2, 4, 4, 3], <0, -1, -4, -3, 1]>
  • flattone [<1, 2, 4, -1], <0, -1, -4, 9]>
    • flattone [<1, 2, 4, -1, 6], <0, -1, -4, 9, -6]>
  • meantone [<1, 2, 4, 7], <0, -1, -4, -10]>
    • meanenneadecal [<1, 2, 4, 7, 6], <0, -1, -4, -10, -6]>
    • meanpop [<1, 2, 4, 7, -2], <0, -1, -4, -10, 13]>
    • meantone [<1, 2, 4, 7, 11], <0, -1, -4, -10, -18]>

helmholtz [<1, 2, -1], <0, -1, 8]>

  • schism [<1, 2, -1, 2], <0, -1, 8, 2]>
  • garibaldi [<1, 2, -1, -3], <0, -1, 8, 14]>
    • garibaldi [<1, 2, -1, -3, 13], <0, -1, 8, 14, -23]>
      • garibaldi [<1, 2, -1, -3, 13, 12], <0, -1, 8, 14, -23, -20]>
    • cassandra [<1, 2, -1, -3, -4], <0, -1, 8, 14, 18]>
      • cassandra [<1, 2, -1, -3, -4, -5], <0, -1, 8, 14, 18, 21]>
  • grackle [<1, 2, -1, -8], <0, -1, 8, 26]>
  • pontiac, infraschismic [<1, 2, -1, 19], <0, -1, 8, -39]>

superpyth [<1, 2, 6], <0, -1, -9]>

  • superpyth [<1, 2, 6, 2], <0, -1, -9, 2]>
  • superpyth [<1, 2, 6, 2, 10], <0, -1, -9, 2, -16]>
  • suprapyth [<1, 2, 6, 2, 1], <0, -1, -9, 2, 6]>

quasisuper [<1, 2, -3, 2], <0, -1, 13, 2]>

leapday [<1, 2, 11, 9, 8, 7], <0, -1, -21, -15, -11, -8]>

kwai [<1, 2, 16, 14], <0, -1, -33, -27]>

  • kwai [<1, 2, 16, 14, -4], <0, -1, -33, -27, 18]>

undecental [<1, 2, -13, -15], <0, -1, 37, 43]>

counterschismic [<1, 2, 21], <0, -1, -45]>

dicot [<1, 1, 2], <0, 2, 1]>

  • dicot [<1, 1, 2, 2], <0, 2, 1, 3]>
  • sharp [<1, 1, 2, 1], <0, 2, 1, 6]>

mohajira semififths[<1, 1, 0, 6], <0, 2, 8, -11]>

  • mohajira <1, 1, 0, 6, 2], <0, 2, 8, -11, 5]>

maqamic [<1, 1, 0, 4, 2], <0, 2, 8, -4, 5]>

  • maqamic <1, 1, 0, 4, 2, 4], <0, 2, 8, -4, 5, -1]>

beatles [<1, 1, 5, 4], <0, 2, -9, -4]>

karadeniz [<1, 1, 7, 11, 2], <0, 2, -16, -28, 5]>

hemififths [<1, 1, -5, -1], <0, 2, 25, 13]>

bug [<1, 2, 3], <0, -2, -3]>

  • beep [<1, 2, 3, 3], <0, -2, -3, -1]>
    • pentoid [<1, 2, 3, 3, 3], <0, -2, -3, -1, 2]>

superpelog [<1, 2, 1, 3], <0, -2, 6, -1]>

godzilla [<1, 2, 4, 3], <0, -2, -8, -1]>

monzismic [<1, 2, 10], <0, -2, -37]>

gidorah [<1, 1, 2, 3], <0, 3, 2, -1]>

penta [<1, 1, 2, 2], <0, 3, 2, 4]>

laconic [<1, 1, 1], <0, 3, 7]>

gorgo [<1, 1, 1, 3], <0, 3, 7, -1]

  • gorgo [<1 1 1 3 1|, <0 3 7 -1 13|>
    • gorgo [<1 1 1 3 1 2|, <0 3 7 -1 13 9|>
  • spartan [<1 1 1 3 5|, <0 3 7 -1 -8|>

mothra, cynder [<1, 1, 0, 3], <0, 3, 12, -1]>

  • mothra, cynder [<1, 1, 0, 3, 5], <0, 3, 12, -1, -8]>

rodan [<1, 1, -1, 3], <0, 3, 17, -1]>

  • rodan[<1, 1, -1, 3, 6], <0, 3, 17, -1, -13]>
    • rodan [<1, 1, -1, 3, 6, 8], <0, 3, 17, -1, -13, -22]>
    • aerodactyl [<1, 1, -1, 3, 6, -1], <0, 3, 17, -1, -13, 24]>

guiron [<1, 1, 7, 3], <0, 3, -24, -1]>

porcupine [<1, 2, 3], <0, -3, -5]>

  • hystrix [<1, 2, 3, 3], <0, -3, -5, -1]>
  • porcupine [<1, 2, 3, 2], <0, -3, -5, 6]>
    • porcupine [<1, 2, 3, 2, 4], <0, -3, -5, 6, -4]>
  • opossum, pentadecimal [<1, 2, 3, 4], <0, -3, -5, -9]>
    • opossum [<1, 2, 3, 4, 4], <0, -3, -5, -9, -4]>
  • coendou [<1, 2, 3, 1, 4, 3], <0, -3, -5, 13, -4, 5]>
  • ammonite [<1, 5, 8, 10], <0, -9, -15, -19]>
  • porcupinefish [<1, 2, 3, 2, 4, 6], <0, -3, -5, 6, -4, -17]>

triton [<1, 3, -1, -1], <0, -3, 7, 8]>

liese, gawel [<1, 3, 8, 8], <0, -3, -12, -11]>

tricot [<1, 3, 16], <0, -3, -29]>

tetracot [<1, 1, 1], <0, 4, 9]>

  • monkey [<1, 1, 1, 5], <0, 4, 9, -15]>
  • bunya [<1, 1, 1, -1], <0, 4, 9, 26]>

vulture [<1, 0, -6], <0, 4, 21]>

  • buzzard [<1, 0, -6, 4], <0, 4, 21, -3]>
    • buzzard [<1, 0, -6, 4, -12, -7], <0, 4, 21, -3, 39, 27]>

sesquiquartififths [<1, 1, 7, 5], <0, 4, -32, -15]>

semihemififths [<1, 1, -5, -1, 8], <0, 4, 50, 26, -31]>

sidi [<1, 3, 3, 6], <0, -4, -2, -9]>

negri [<1, 2, 2], <0, -4, 3]>

  • negri [<1, 2, 2, 3], <0, -4, 3, -2]>
    • negri [<1 2 2 3 4|, <0 -4 3 -2 -5|]
      • negri [<1 2 2 3 4 4|, <0 -4 3 -2 -5 -3|]
    • negril [<1 2 2 3 2|, <0 -4 3 -2 14|]
      • negril [<1, 2, 2, 3, 2, 4], <0, -4, 3, -2, 14, -3]>

sentinel [<1, 3, -3, 6], <0, -4, 15, -9]>

squares [<1, 3, 8, 6], <0, -4, -16, -9]>

magic [<1, 0, 2], <0, 5, 1]>

  • muggles [<1, 0, 2, 5], <0, 5, 1, -7]>
  • magic [<1, 0, 2, -1], <0, 5, 1, 12]>
    • magic [<1, 0, 2, -1, 6], <0, 5, 1, 12, -8]>

passion [<1, 2, 2], <0, -5, 4]>

  • passion [<1, 2, 2, 2], <0, -5, 4, 10]>

ripple [<1, 2, 3], <0, -5, -8]>

  • ripple [<1, 2, 3, 3], <0, -5, -8, -2]>

tritonic [<1, 4, -3, -3], <0, -5, 11, 12]>

  • tritonic [<1, 4, -3, -3, 2], <0, -5, 11, 12, 3]>

amity [<1, 3, 6], <0, -5, -13]>

  • amity [<1, 3, 6, -2], <0, -5, -13, 17]>
    • hitchcock, amity [<1, 3, 6, -2, 6], <0, -5, -13, 17, -9]>
      • hitchcock [<1, 3, 6, -2, 6, 2], <0, -5, -13, 17, -9, 6]>

gravity [<1, 5, 12], <0, -6, -17]>

hanson [<1, 0, 1], <0, 6, 5]>

  • keemun [<1, 0, 1, 2], <0, 6, 5, 3]>
    • keemun [<1, 0, 1, 2, 4], <0, 6, 5, 3, -2]>
  • catakleismic [<1, 0, 1, -3], <0, 6, 5, 22]>
    • catakleismic [<1, 0, 1, -3, 9], <0, 6, 5, 22, -21]>
      • catakleismic [<1, 0, 1, -3, 9, 0], <0, 6, 5, 22, -21, 14]>
  • countercata [<1, 0, 1, 11], <0, 6, 5, -31]>

ampersand [<1, 1, 3], <0, 6, -7]>

  • miracle[<1, 1, 3, 3], <0, 6, -7, -2]>
    • miracle [<1, 1, 3, 3, 2], <0, 6, -7, -2, 15]>

marvo [<1, -1, -5, -17], <0, 6, 17, 46]>

nautilus [<1, 2, 3, 3], <0, -6, -10, -3]>

orson [<1, 0, 3], <0, 7, -3]>

  • orwell [<1, 0, 3, 1], <0, 7, -3, 8]>
    • orwell [<1, 0, 3, 1, 3], <0, 7, -3, 8, 2]>
      • orwell [<1, 0, 3, 1, 3, 8], <0, 7, -3, 8, 2, -19]>
      • blair [<1, 0, 3, 1, 3, 3], <0, 7, -3, 8, 2, 3]>
      • winston [<1, 0, 3, 1, 3, 1], <0, 7, -3, 8, 2, 12]>
      • doublethink [<1, 0, 3, 1, 3, 2], <0, 14, -6, 16, 4, 15]>

sensi [<1, -1, -1], <0, 7, 9]>

  • sensi [<1, -1, -1, -2], <0, 7, 9, 13]>

sensor [<1, -1, -1, -2, 9], <0, 7, 9, 13, -15]>

  • sensor [<1, -1, -1, -2, 9, 0], <0, 7, 9, 13, -15, 10]>

sensis [<1 6 8 11 6|, <0 -7 -9 -13 -4|]

  • sensis [<1 6 8 11 6 10|, <0 -7 -9 -13 -4 -10|]

sensus [<1 6 8 11 23|, <0 -7 -9 -13 -31|]

  • sensus [<1 6 8 11 23 10|, <0 -7 -9 -13 -31 -10|]

roman [<1, 4, 3, -1, 0, 3], <0, -7, -2, 11, 10, 2]>

octacot [<1, 1, 1, 2], <0, 8, 18, 11]>

würschmidt [<1, -1, 2], <0, 8, 1]>

  • worschmidt [<1, -1, 2, 7], <0, 8, 1, -13]>
  • wurschmidt [<1, -1, 2, -3], <0, 8, 1, 18]>
  • whirrschmidt [<1, 7, 3, 38], <0, -8, -1, -52]>

valentine [<1, 1, 2], <0, 9, 5]>

  • valentine[<1, 1, 2, 3], <0, 9, 5, -3]>
    • valentine [<1, 1, 2, 3, 3], <0, 9, 5, -3, 7]>
      • valentino [<1, 1, 2, 3, 3, 5], <0, 9, 5, -3, 7, -20]>
      • dwynwen [<1, 1, 2, 3, 3, 2], <0, 9, 5, -3, 7, 26]>
      • lupercalia [<1 1 2 3 3 3|, <0 9 5 -3 7 11|]

escapade [<1, 2, 2], <0, -9, 7]>

  • escapade [<1, 2, 2, 3], <0, -9, 7, -4]>
  • escaped [<1, 2, 2, 4], <0, -9, 7, -26]>

superkleismic [<1, 4, 5, 2], <0, -9, -10, 3]>

  • superkleismic [<1, 4, 5, 2, 4], <0, -9, -10, 3, -2]>

myna [<1, -1, 0, 1], <0, 10, 9, 7]>

  • myna [<1, -1, 0, 1, -3], <0, 10, 9, 7, 25]>
    • myna [<1, -1, 0, 1, -3, 5], <0, 10, 9, 7, 25, -5]>

sycamore [<1, 1, 2], <0, 11, 6]>

  • sycamore [<1, 1, 2, 2], <0, 11, 6, 15]>

septimin [<1, 4, 1, 5], <0, -11, 6, -10]>

nusecond [<1, 3, 4, 5], <0, -11, -13, -17]>

quartonic [<1, 2, 3, 3], <0, -11, -18, -5]>

hemikleismic [<1, 0, 1, 4], <0, 12, 10, -9]>

clyde [<1, 6, 6, 12], <0, -12, -10, -25]>

bohpier [<1, 0, 0, 0], <0, 13, 19, 23]>

gammic [<1, 1, 2], <0, 20, 11]>

  • gammic [<1, 1, 2, 0], <0, 20, 11, 96]>

neptune [<1, 21, 13, 13], <0, -40, -22, -21]>

pluto [<1, 5, 15, 15, 2], <0, 7, 26, 25, -3]>

twothirdtonic [<1, 3, 2, 4, 4], <0, -13, 3, -11, -5]>

  • twothirdtonic [<1, 3, 2, 4, 4, 5], <0, -13, 3, -11, -5, -12]>

slender [<1, 2, 2, 3], <0, -13, 10, -6]>

  • slender [<1, 2, 2, 3, 4], <0, -13, 10, -6, -17]>

parakleismic [<1, 5, 6], <0, -13, -14]>

  • parakleismic [<1, 5, 6, 12], <0, -13, -14, -35]>

fortune [<1, -1, 11], <0, 14, -47]>

hemithirds, luna [<1, 4, 2], <0, -15, 2]>

hemiwürschmidt [<1, -1, 2, 2], <0, 16, 2, 5]>

  • hemiwürschmidt [<1, -1, 2, 2, -3], <0, 16, 2, 5, 40]>

semisept [<1, -5, 0, -3], <0, 17, 6, 15]>

vavoom [<1, 0, 4], <0, 17, -18]>

minortone [<1, -1, -3], <0, 17, 35]>

  • mitonic [<1, -1, -3, 6], <0, 17, 35, -21]>

casablanca [<1, -7, -4, 1], <0, 19, 14, 4]>

tertiaseptal [<1, 3, 2, 3], <0, -22, 5, -3]>

grendel, voodoo [<1, 9, 2, 7], <0, -23, 1, -13]>

gamera [<1, 6, 10, 3], <0, -23, -40, -1]>

astro [<1, 5, 1], <0, -31, 12]>

semihemiwürschmidt [<1, 15, 4, 7, 24], <0, -32, -4, -10, -49]>

whoosh [<1, 17, 14], <0, -33, -25]>

yarman [<1, 2, 3, 4, 4], <0, -33, -54, -95, -43]>

senior [<1, 11, 19], <0, -35, -62]>

raider [<1, -9, -26], <0, 37, 99]>

supermajor [<1, 15, 19, 30], <0, -37, -46, -75]>

quasiorwell [<1, -7, 3, 1], <0, 38, -3, 8]>

semigamera [<1, 6, 10, 3, 12], <0, -46, -80, -2, -89]>

gross [<1, -2, 4], <0, 47, -22]>

pirate [<1, -6, 0], <0, 49, 15]>

egads [<1, 15, 16], <0, -51, -52]>

avila [<1, 1, -1], <0, 1, 6]>

mabila [<1, 6, 1], <0, -10, 3]>

pycnic [<1, 3, -1, 8], <0, -3, 7, -11]>

enipucrop [<1, 2, 2], <0, -3, 2]>

Two periods per octave[edit]

srutal [<2, 3, 5], <0, 1, -2]>

  • pajara [<2, 3, 5, 6], <0, 1, -2, -2]>
    • pajaric [<2, 3, 5, 6, 7], <0, 1, -2, -2, 0]>
    • pajarous [<2, 3, 5, 6, 6], <0, 1, -2, -2, 5]>
    • pajara [<2, 3, 5, 6, 8], <0, 1, -2, -2, -6]>
  • diaschismic [<2, 3, 5, 7], <0, 1, -2, -8]>
    • diaschismic [<2, 3, 5, 7, 9, 10], <0, 1, -2, -8, -12, -15]>
  • keen [<2, 3, 5, 4], <0, 1, -2, 9]>

supersharp [<2, 3, 4], <0, 1, 3]>

  • octokaidecal [<2, 3, 4, 5], <0, 1, 3, 3]>

bipelog [<2, 3, 5, 6], <0, 1, -3, -3]>

injera [<2, 3, 4, 5], <0, 1, 4, 4]>

  • injera [<2, 3, 4, 5, 6], <0, 1, 4, 4, 6]>

bischismic [<2, 3, 6, 9], <0, 1, -8, -20]>

shrutar [<2, 3, 5, 5], <0, 2, -4, 7]>

  • shrutar [<2, 3, 5, 5, 7], <0, 2, -4, 7, -1]>
    • srutar [<2, 3, 5, 5, 7, 8], <0, 2, -4, 7, -1, -7]>
    • shrutar [<2, 3, 5, 5, 7, 6], <0, 2, -4, 7, -1, 16]>

echidna [<2, 1, 9, 2], <0, 3, -6, 5]>

  • echidna [<2, 1, 9, 2, 12], <0, 3, -6, 5, -7]>

decimal [<2, 4, 5, 6], <0, -2, -1, -1]>

Semihemi [<2, 4, 15, 11, 21], <0, -2, -25, -13, -34]>

lemba [<2, 2, 5, 6], <0, 3, -1, -1]>

hedgehog [<2, 4, 6, 7], <0, -3, -5, -5]>

doublewide [<2, 5, 6], <0, -4, -3]>

sesquiquartififths [<2, 2, 14, 10], <0, 4, -32, -15]>

hemiamity [<2, 1, -1, 13, 13], <0, 5, 13, -17, -14]>

wizard [<2, 1, 5, 2], <0, 6, -1, 10]>

  • wizard [<2, 1, 5, 2, 8], <0, 6, -1, 10, -3]>

unidec [<2, 5, 8, 5], <0, -6, -11, 2]>

  • unidec [<2, 5, 8, 5, 6], <0, -6, -11, 2, 3]>
    • hendec [<2, 5, 8, 5, 6, 8], <0, -6, -11, 2, 3, -2]>

harry [<2, 4, 7, 7], <0, -6, -17, -10]>

vishnu [<2, 4, 5], <0, -7, -3]>

  • vishnu [<2, 4, 5, 10], <0, -7, -3, -37]>

kwazy [<2, 1, 6], <0, 8, -5]>

  • bisupermajor [<2, 1, 6, 1, 8], <0, 8, -5, 17, -4]>

semiparakleismic [<2, -3, -2, -11, -4], <0, 13, 14, 35, 23]>

hemigamera [<2, 12, 20, 6], <0, -23, -40, -1]>

  • hemigamera [<2, 12, 20, 6, 5], <0, -23, -40, -1, 5]>

abigail [<2, 7, 13, -1, 1, -2], <0, -11, -24, 19, 17, 27]>

Three periods per octave[edit]

augmented [<3, 5, 7], <0, -1, 0]>

  • augene, tripletone [<3, 5, 7, 8], <0, -1, 0, 2]>
    • augene, tripletone [<3, 5, 7, 8, 10], <0, -1, 0, 2, 2]>
  • august [<3, 5, 7, 9], <0, -1, 0, -2]>

misty [<3, 5, 6], <0, -1, 4]>

  • misty [<3, 5, 6, 6], <0, -1, 4, 10]>

term [<3, 5, 5, 4], <0, -1, 8, 18]>

semiaug [<3, 5, 7, 9], <0, -2, 0, -5]>

tritikleismic [<3, 6, 8, 8], <0, -6, -5, 2]>

mutt [<3, 5, 7, 8], <0, -7, -1, 12]>

ternary [<3, 5, 7, 8], <3, 5, 7, 9]>

Four or more periods per octave[edit]

diminished [<4, 6, 9], <0, 1, 1]>

  • diminished [<4, 6, 9, 11], <0, 1, 1, 1]>
    • diminished [<4, 6, 9, 11, 14], <0, 1, 1, 1, 0]>
    • demolished [<4, 6, 9, 11, 13], <0, 1, 1, 1, 3]>

blackwood [<5, 8, 12], <0, 0, -1]>

  • blacksmith [<5, 8, 12, 14], <0, 0, -1, 0]>

hexe [<6, 10, 14, 17], <0, -1, 0, 0]>

jamesbond [<7, 11, 16, 20], <0, 0, 0, -1]>

  • jamesbond [<7, 11, 16, 20, 24], <0, 0, 0, -1, 0]>

whitewood [<7, 11, 16], <0, 0, 1]>

octoid [<8, 13, 19, 23, 28], <0, -3, -4, -5, -3]>

ennealimmal [<9, 15, 22], <0, -2, -3]>

  • ennealimmal [<9, 15, 22, 26], <0, -2, -3, -2]>
    • ennealimmal [<9, 15, 22, 26, 37], <0, -2, -3, -2, -16]>

decoid [<10 0 47 36|, <0 2 -3 -1|]

  • decoid [<10 0 47 36 98|, <0 2 -3 -1 -8|]
    • decoid [<10 0 47 36 98 37|, <0 2 -3 -1 -8 0|]

hendecatonic [<11, 17, 26, 30], <0, 1, -1, 2]>

catler [<12, 19, 28, 34], <0, 0, 0, -1]>

compton [<12, 19, 28], <0, 0, -1]>

  • compton, waage [<12, 19, 28, 34], <0, 0, -1, -2]>
    • compton, duodecimal [<12, 19, 28, 34, 42], <0, 0, -1, -2, -3]>

duodecim [<12, 19, 28, 34, 42], <0, 0, 0, 0, -1]>

atomic [<12, 19, 28], <0, 1, -7]>

hemiennealimmal [<18, 28, 41, 50, 62], <0, 2, 3, 2, 1]>

enneadecal [<19, 30, 44], <0, 1, 1]>

  • enneadecal [<19, 30, 44, 53], <0, 1, 1, 3]>

undevigintone [<19, 30, 44, 53, 66], <0, 0, 0, 0, -1]>

icosidillic [<22, 35, 51, 62, 76], <0, -1, 1, -2, 1]>

vigintiduo [<22, 35, 51, 62, 76], <0, 0, 0, 0, 1]>

mystery [<29, 46, 67, 81, 100, 107], <0, 0, 1, 1, 1, 1]>

hemienneadecal [<38, 60, 88, 106, 131], <0, 1, 1, 3, 2]>