Ragismic microtemperaments
The ragisma is 4375/4374 with a monzo of |-1 -7 4 1>, the smallest 7-limit superparticular ratio. Since (10/9)^4=4375/4374 * 32/21, the minor tone 10/9 tends to be an interval of relatively low complexity in temperaments tempering out the ragisma, though when looking at microtemperaments the word "relatively" should be emphasized. Even so mitonic uses it as a generator, which ennealimmal and enneadecal can do also, and amity reaches it in three generators. We also have 7/6 = 4375/4374 * (27/25)^2, so 27/25 also tends to relatively low complexity, with the same caveat about "relatively"; however 27/25 is the period for ennealimmal.
Ennealimmal[edit]
Ennealimmal temperament tempers out the two smallest 7-limit superparticular commas, 2401/2400 and 4375/4374, leading to a temperament of unusual efficiency. It also tempers out the ennealimma comma, |1 -27 18>, which leads to the identification of (27/25)^9 with the octave, and gives ennealimmal a period of 1/9 octave. While 27/25 is a 5-limit interval, two periods equates to 7/6 because of identification by 4375/4374, and this represents 7/6 with such accuracy (a fifth of a cent flat) that there is no realistic possibility of treating ennealimmal as anything other than 7-limit. Its wedgie is <<18 27 18 1 -22 -34||.
Aside from 10/9 which has already been mentioned, possible generators include 36/35, 21/20, 6/5, 7/5 and the neutral thirds pair 49/40 and 60/49, all of which have their own interesting advantages. Possible tunings are 441, 612, or 3600 equal, though its hardly likely anyone could tell the difference.
If 1/9 of an octave is too small of a period for you, you could try generator-period pairs of [3, 5], [5/3, 3], [6/5, 4/3], [4/3, 8/5] or [10/9, 4/3] (for example.) In particular, people fond of the idea of "tritaves" as analogous to octaves might consider the 28 or 43 note MOS with generator an approximate 5/3 within 3; for instance as given by 451/970 of a "tritave". Tetrads have a low enough complexity that (for example) there are nine 1-3/2-7/4-5/2 tetrads in the 28 notes to the tritave MOS, which is equivalent in average step size to a 17 2/3 to the octave MOS.
valid range: [26.667, 66.667] (45bcd to 18bcd)
nice range: [48.920, 49.179]
strict range: [48.920, 49.179]
Commas: 2401/2400, 4375/4374
POTE generators: 36/35: 49.0205; 10/9: 182.354; 6/5: 315.687; 49/40: 350.980
Map: [<9 1 1 2|, <0 2 3 2|]
Wedgie: <<18 27 18 1 -22 -34||
EDOs: 27, 45, 72, 99, 171, 270, 441, 612, 3600
Badness: 0.00361
11 limit hemiennealimmal[edit]
Commas: 2401/2400, 4375/4374, 3025/3024
valid range: [13.333, 22.222] (90bcd, 54c)
nice range: [17.304, 17.985]
strict range: [17.304, 17.985]
POTE generator: 99/98: 17.6219 or 6/5: 315.7114
Map: [<18 0 -1 22 48|, <0 2 3 2 1|]
EDOs: 72, 198, 270, 342, 612, 954, 1566
Badness: 0.00628
13 limit hemiennealimmal[edit]
Commas: 676/675, 1001/1000, 1716/1715, 3025/3024
valid range: [16.667, 22.222] (72 to 54cf)
nice range: [17.304, 18.309]
strict range: [17.304, 18.309]
POTE generator ~99/98 = 17.7504
Map: [<18 0 -1 22 48 -19|, <0 2 3 2 1 6|]
EDOs: 72, 198, 270
Badness: 0.0125
Semiennealimmal[edit]
Commas: 2401/2400, 4375/4374, 4000/3993
POTE generator: ~140/121 = 250.3367
Map: [<9 3 4 14 18|, <0 6 9 6 7|]
EDOs: 72, 369, 441
Badness: 0.0342
13 limit semiennealimmal[edit]
Commas: 1575/1573, 2080/2079, 2401/2400, 4375/4374
POTE generator: ~140/121 = 250.3375
Map: [<9 3 4 14 18 -8|, <0 6 9 6 7 22|]
EDOs: 72, 441
Badness: 0.0261
Quadraennealimmal[edit]
Commas: 2401/2400 4375/4374 234375/234256
POTE generator: ~77/75 = 45.595
Map: [<9 1 1 12 -7|, [0 8 12 8 23]]
EDOs: 342, 1053, 1395, 1737, 4869d, 6606cd
Badness: 0.0213
Ennealimnic[edit]
Commas: 243/242, 441/440, 4375/4356
valid range: [44.444, 53.333] (27e to 45e)
nice range: [48.920, 52.592]
strict range: [48.920, 52.592]
POTE generator: ~36/35 = 49.395
Map: [<9 1 1 12 -2|, <0 2 3 2 5|]
EDOs: 72, 171, 243
Badness: 0.0203
13 limit ennealimnic[edit]
Commas: 243/242, 364/363, 441/440, 625/624
valid range: [48.485, 50.000] (99ef to 72)
nice range: [48.825, 52.592]
strict range: [48.825, 50.000]
POTE generator: ~36/35 = 49.341
Map: [<9 1 1 12 -2 -33|, <0 2 3 2 5 10|]
EDOs: 72, 171, 243
Badness: 0.0233
17 limit ennealimnic[edit]
Commas: 243/242, 364/363, 375/374, 441/440, 595/594
valid range: [48.485, 50.000] (99ef to 72)
nice range: [46.363, 52.592]
strict range: [48.485, 50.000]
POTE generator: ~36/35 = 49.335
Map: [<9 1 1 12 -2 -33 -3|, <0 2 3 2 5 10 6|]
EDOs: 72, 171, 243
Badness: 0.0146
Ennealim[edit]
Commas: 169/168, 243/242, 325/324, 441/440
POTE generator: ~36/35 = 49.708
Map: [<9 1 1 12 -2 20|, <0 2 3 2 5 2|]
EDOs: 27e, 45f, 72, 315ff, 387cff, 459cdfff
Badness: 0.0207
Ennealiminal[edit]
Commas: 385/384, 1375/1372, 4375/4374
POTE generator: ~36/35 = 49.504
Map: [<9 1 1 12 51|, <0 2 3 2 -3|]
EDOs: 27, 45, 72, 171e, 243e, 315e
Badness: 0.0311
13-limit[edit]
Commas: 169/168, 325/324, 385/384, 1375/1372
POTE generator: ~36/35 = 49.486
Map: [<9 1 1 12 51 20|, <0 2 3 2 -3 2|]
EDOs: 27, 45f, 72, 171ef, 243ef
Badness: 0.0303
Trinealimmal[edit]
Commas: 2401/2400, 4375/4374, 2097152/2096325
POTE generator: ~6/5 = 315.644
Map: [<27 1 0 34 177|, <0 2 3 2 -4|]
EDOs: 27, 243, 270, 783, 1053, 1323, 10854bcde
Badness: 0.0298
Semihemiennealimmal[edit]
Commas: 2401/2400, 4375/4374, 3025/3024, 4225/4224
POTE generator: ~39/32 = 342.139
Map: [<18 0 -1 22 48 88|, <0 4 6 4 2 -3|]
EDOs: 126, 144, 270, 684, 954
Badness: 0.0131
Gamera[edit]
Commas: 4375/4374, 589824/588245
POTE generator ~8/7 = 230.336
Map: [<1 6 10 3|, <0 -23 -40 -1|]
EDOs: 26, 73, 99, 224, 323, 422, 735
Badness: 0.0376
Hemigamera[edit]
Commas: 3025/3024, 4375/4374, 202397184/201768035
POTE generator: ~8/7 = 230.337
Map: [<2 12 20 6 5|, <0 -23 -40 -1 5|]
EDOs: 26, 198, 224, 422, 646, 1068d
Badness: 0.0410
13-limit[edit]
Commas: 1716/1715 2080/2079 2200/2197 3025/3024
Map: [<2 12 20 6 5 17|, <0 -23 -40 -1 5 -25|]
EDOs: 26, 198, 224, 422, 646f, 1068df
Badness: 0.0204
Supermajor[edit]
The generator for supermajor temperament is a supermajor third, 9/7, tuned about 0.0002 cents flat. 37 of these give (2^15)/3, 46 give (2^19)/5, and 75 give (2^30)/7, leading to a wedgie of <<37 46 75 -13 15 45||. This is clearly quite a complex temperament; it makes up for it, to the extent it does, with extreme accuracy: 1106 or 1277 can be used as tunings, leading to accuracy even greater than that of ennealimmal. The 80 note MOS is presumably the place to start, and if that isn't enough notes for you, there's always the 171 note MOS.
Commas: 4375/4374, 52734375/52706752
POTE generator: ~9/7 = 435.082
Map: [<1 15 19 30|, <0 -37 -46 -75|]
EDOs: 11, 80, 171, 764, 1106, 1277, 3660, 4937, 6214
Badness: 0.0108
Semisupermajor[edit]
Commas: 3025/3024, 4375/4374, 35156250/35153041
POTE generator: ~9/7 = 435.082
Map: [<2 30 38 60 41|, <0 -37 -46 -75 -47|]
EDOs: 80, 342, 764, 1106, 1448, 2554, 4002f, 6556cf
Badness: 0.0128
Enneadecal[edit]
Enndedecal temperament tempers out the enneadeca, |-14 -19 19>, and as a consequence has a period of 1/19 octave. This is because the enneadeca is the amount by which nineteen just minor thirds fall short of an octave. If to this we add 4375/4374 we get the 7-limit temperament we are considering here, but note should be taken of the fact that it makes for a reasonable 5-limit microtemperament also, where the generator can be 25/24, 27/25, 10/9, 5/4 or 3/2. To this we may add possible 7-limit generators such as 225/224, 15/14 or 9/7. Since enneadecal tempers out 703125/702464, the amount by which 81/80 falls short of three stacked 225/224, we can equate the 225/224 generator with (81/80)^(1/3). This is the interval needed to adjust the 1/3 comma meantone flat fifths and major thirds of 19edo up to just ones. 171edo is a good tuning for either the 5 or 7 limits, and 494edo shows how to extend the temperament to the 11 or 13 limit, where it is accurate but very complex. Fans of near-perfect fifths may want to use 665edo for a tuning.
Commas: 4375/4374, 703125/702464
POTE generator: ~3/2 = 701.880
Map: [<19 0 14 -37|, <0 1 1 3|]
Generators: 28/27, 3
EDOs: 19, 152, 171, 665, 836, 1007, 2185
Badness: 0.0110
Deca[edit]
Commas: 4375/4374, 165288374272/164794921875
POTE generator: ~460992/390625 = 284.423
Map: [<10 4 2 9|, <0 5 6 11|]
EDOs: 80, 190, 270, 1270, 1540, 1810, 2080
Badness: 0.0806
11-limit[edit]
Commas: 3025/3024, 4375/4374, 422576/421875
POTE generator: ~33/28 = 284.418
Map: [<10 4 2 9 18|, <0 5 6 11 7|]
EDOs: 80, 190, 270, 1000, 1270
Badness: 0.0243
13-limit[edit]
Commas: 1001/1000, 3025/3024, 4225/4224, 4375/4374
POTE generator: ~33/28 = 284.398
Map: [<10 4 2 9 18 37|, <0 5 6 11 7 0|]
EDOs: 80, 190, 270, 730, 1000
Badness: 0.0168
Mitonic[edit]
Commas: 4375/4374, 2100875/2097152
POTE generator: ~10/9 = 182.458
Map: [<1 16 32 -15|, <0 -17 -35 21|]
EDOs: 46, 125, 171
Badness: 0.0252
Abigail[edit]
Commas: 4375/4374, 2147483648/2144153025
POTE generator: 208.899
Map: [<2 7 13 -1|, <0 -11 -24 19|]
Wedgie: <<22 48 -38 25 -122 -223||
EDOs: 46, 132, 178, 224, 270, 494, 764, 1034, 1798
Badness: 0.0370
11-limit[edit]
Comma: 3025/3024, 4375/4374, 20614528/20588575
POTE generator: 208.901
Map: [<2 7 13 -1 1|, <0 -11 -24 19 17|]
EDOs: 46, 132, 178, 224, 270, 494, 764
Badness: 0.0129
13-limit[edit]
Commas: 1716/1715, 2080/2079, 3025/3024, 4096/4095
POTE generator: 208.903
Map: [<2 7 13 -1 1 -2|, <0 -11 -24 19 17 27|]
EDOs: 46, 178, 224, 270, 494, 764, 1258
Badness: 0.00886
Semidimi[edit]
Commas: 4375/4374, 3955078125/3954653486
POTE generator: ~35/27 = 449.127
Map: [<1 36 48 61|, <0 -55 -73 -93|]
Wedgie: <<55 73 93 -12 -7 11||
EDOs: 171, 863, 8419, 1205, 1376, 1547, 1718, 4983, 6701, 8419
Badness: 0.0151
Brahmagupta[edit]
Commas: 4375/4374, 70368744177664/70338939985125
POTE generator: ~27/20 = 519.716
Map: [<7 2 -8 53|, <0 3 8 -11|]
Wedgie: <<21 56 -77 40 -181 -336||
EDOs: 217, 224, 441, 1106, 1547
Badness: 0.0291
11-limit[edit]
Commas: 4000/3993, 4375/4374, 131072/130977
POTE generator: ~27/20 = 519.704
Map: [<7 2 -8 53 3|, <0 3 8 -11 7|]
EDOs: 217, 224, 441, 665, 1771e
Badness: 0.0522
Neusec[edit]
Commas: 3025/3024, 4375/4374, 235298/234375
POTE generator: ~12/11 = 151.547
Map: [<2 11 15 19 15|, <0 -31 -41 -53 -32|]
EDOs: 190, 388
Badness: 0.0591
13-limit[edit]
Commas: 847/845, 1001/1000, 3025/3024, 4375/4374
POTE generator: ~12/11 = 151.545
Map: [<2 11 15 19 15 17|, <0 -31 -41 -53 -32 -38|]
EDOs: 190, 198, 388
Badness: 0.0309
Quasithird[edit]
Commas: 4375/4374, 1153470752371588581/1152921504606846976
POTE generator: ~5103/4096 = 380.388
Map: [<4 0 -11 48|, <0 5 16 -29|]
Wedgie: <<20 64 -116 55 -240 -449||
EDOs: 164, 224, 388, 612, 1448, 2060
Badness: 0.0618
11-limit[edit]
Commas: 3025/3024, 4375/4374, 4296700485/4294967296
POTE generator: ~5103/4096 = 380.387
Map: [<4 0 -11 48 43|, <0 5 16 -29 -23|]
EDOs: 164, 224, 388, 612, 836, 1448
Badness: 0.0211
13-limit[edit]
Commas: 2200/2197, 3025/3024, 4375/4374, 468512/468195
POTE generator: ~5103/4096 = 380.385
Map: [<4 0 -11 48 43 11|, <0 5 16 -29 -23 3|]
EDOs: 164, 224, 388, 612, 836, 1448f, 2284f
Badness: 0.0295
Semidimfourth[edit]
Commas: 4375/4374, 235298/234375
POTE generator: ~35/27 = 448.457
Map: [<1 21 28 36|, <0 -31 -41 -53|]
Wedgie: <<31 41 53 -7 -3 8||
EDOs: 91, 99, 289, 388, 875, 1263d, 1651d
Badness: 0.0552
Acrokleismic[edit]
Commas: 4375/4374, 2202927104/2197265625
POTE generator: ~6/5 = 315.557
Map: [<1 10 11 27|, <0 -32 -33 -92|]
Wedgie: <<32 33 92 -22 56 121||
EDOs: 19, 251, 270
Badness: 0.0562
11-limit[edit]
Commas: 4375/4374, 41503/41472, 172032/171875
POTE generator: ~6/5 = 315.558
Map: [<1 10 11 27 -16|, <0 -32 -33 -92 74|]
EDOs: 19, 251, 270, 829, 1099, 1369, 1639
Badness: 0.0369
13-limit[edit]
Commas: 676/675, 1001/1000, 4375/4374, 10985/10976
POTE generator: ~6/5 = 315.557
Map: [<1 10 11 27 -16 25|, <0 -32 -33 -92 74 -81|]
EDOs: 19, 251, 270
Badness: 0.0268
Counteracro[edit]
Commas: 4375/4374, 5632/5625, 117649/117612
POTE generator: ~6/5 = 315.553
Map: [<1 10 11 27 55|, <0 -32 -33 -92 -196|]
EDOs: 270, 1061e, 1331c, 1601c, 1871bc, 4012bcde
Badness: 0.0426
13-limit[edit]
Commas: 676/675, 1716/1715, 4225/4224, 4375/4374
POTE generator: ~6/5 = 315.554
Map: [<1 10 11 27 55 25|, <0 -32 -33 -92 -196 -81|]
EDOs: 270, 1331c, 1601c, 1871bcf, 2141bcf
Badness: 0.0260
Seniority[edit]
Commas: 4375/4374 201768035/201326592
POTE generator: ~3087/2560 = 322.804
Map: [<1 11 19 2|, <0 -35 -62 3|]
Wedgie: <<35 62 -3 17 -103 -181||
EDOs: 26, 145, 171, 2710d
Badness: 0.0449
Orga[edit]
Commas: 4375/4374 54975581388800/54936068900769
POTE generator: ~8/7 = 231.104
Map: [<2 21 36 5|, <0 -29 -51 1|]
Wedgie: <<58 102 -2 27 -166 -291||
EDOs: 26, 244, 270, 836, 1106, 1376, 2482, 19856bd, 23714bd
Badness: 0.0402
11-limit[edit]
Commas: 3025/3024 4375/4374 5767168/5764801
POTE generator: ~8/7 = 231.103
Map: [<2 21 36 5 2|, <0 -29 -51 1 8|]
EDOs: 26, 244, 270, 566, 836, 1106, 7472e, 8578de, 9684cde, 10790cde, 11896cde
Badness: 0.0162
Quatracot[edit]
Commas: 4375/4374, 1483154296875/1473173782528
POTE generator: ~448/405 = 176.805
Map: [<2 7 7 23|, <0 -13 -8 -59|]
Wedgie: <<26 16 118 -35 114 229||
EDOs: 190, 224, 414, 638, 1052c, 1690bc
Badness: 0.1760
11-limit[edit]
Commas: 3025/3024, 4375/4374, 1265625/1261568
POTE generator: ~448/405 = 176.806
Map: [<2 7 7 23 19|, <0 -13 -8 -59 -41|]
EDOs: 190, 224, 414, 638, 1052c
Badness: 0.0410
13-limit[edit]
Commas: 625/624, 729/728, 1575/1573, 2200/2197
POTE generator: ~448/405 = 176.804
Map: [<2 7 7 23 19 13|, <0 -13 -8 -59 -41 -19|]
EDOs: 190, 224, 414, 638, 1690bc, 2328bcde
Badness: 0.0226
Nearly Micro[edit]
Octoid[edit]
Commas: 4375/4374, 16875/16807
valid range: [578.571, 600.000] (56bcd to 8d)
nice range: [582.512, 584.359]
strict range: [582.512, 584.359]
POTE generator: ~7/5 = 583.940
Map: [<8 1 3 3|, <0 3 4 5|]
Generators: 49/45, 7/5
EDOs: 72, 152, 224
Badness: 0.0427
11-limit[edit]
Commas: 540/539, 1375/1372, 4000/3993
valid range: [581.250, 586.364] (64cd, 88bcde)
nice range: [582.512, 585.084]
strict range: [582.512, 585.084]
POTE generator: ~7/5 = 583.692
Map: [<8 1 3 3 16|, <0 3 4 5 3|]
EDOs: 72, 152, 224
Badness: 0.0141
13-limit[edit]
Commas: 540/539, 1375/1372, 4000/3993, 625/624
POTE generator: ~7/5 = 583.905
Map: [<8 1 3 3 16 -21|, <0 3 4 5 3 13|]
EDOs: 72, 224
Badness: 0.0153
Music[edit]
http://www.archive.org/details/Dreyfus
Octopus[edit]
Commas: 169/168, 325/324, 364/363, 540/539
POTE generator: ~7/5 = 583.892
Map: [<8 1 3 3 16 14|, <0 3 4 5 3 4|]
EDOs: 72, 152, 224f
Badness: 0.0217
Amity[edit]
The generator for amity temperament is the acute minor third, which means an ordinary 6/5 minor third raised by an 81/80 comma to 243/200, and from this it derives its name. Aside from the ragisma it tempers out the 5-limit amity comma, 1600000/1594323, 5120/5103 and 6144/6125. It can also be described as the 46&53 temperament, or by its wedgie, <<5 13 -17 9 -41 -76||. 99edo is a good tuning for amity, with generator 28/99, and MOS of 11, 18, 25, 32, 46 or 53 notes are available. If you are looking for a different kind of neutral third this could be the temperament for you.
In the 5-limit amity is a genuine microtemperament, with 58/205 being a possible tuning. Another good choice is (64/5)^(1/13), which gives pure major thirds.
5-limit[edit]
Comma: 1600000/1594323
POTE generator: ~243/200 = 339.519
Map: [<1 3 6|, <0 -5 -13|]
EDOs: 7, 39, 46, 53, 152, 205, 463, 668, 873
Badness: 0.0220
7-limit[edit]
Commas: 4375/4374, 5120/5103
POTE generator: ~243/200 = 339.432
Map: [<1 3 6 -2|, <0 -5 -13 17|]
Wedgie: <<5 13 -17 9 -41 -76||
EDOs: 7, 39, 46, 53, 99, 251, 350
Badness: 0.0236
11-limit[edit]
Commas: 540/539, 4375/4374, 5120/5103
POTE generator: ~243/200 = 339.464
Map: [<1 3 6 -2 21|, <0 -5 -13 17 -62|]
EDOs: 53, 99e, 152, 555de, 707de, 859bde
Badness: 0.0315
13-limit[edit]
Commas: 352/351, 540/539, 625/624, 847/845
POTE generator: ~243/200 = 339.481
Map: [<1 3 6 -2 21 17|, <0 -5 -13 17 -62 -47|]
EDOS: 53, 99ef, 152f, 205
Badness: 0.0280
Accord[edit]
Commas: 126/125, 100352/98415
POTE generator: ~243/200 = 338.993
Map: [<1 3 6 11|, <0 -5 -13 -29|]
Wedgie: <<5 13 29 9 32 31||
EDOs: 46, 131c, 177c
Badness: 0.0956
11-limit[edit]
Commas: 121/120, 126/125, 896/891
POTE generator: ~11/9 = 339.047
Map: [<1 3 6 11 6|, <0 -5 -13 -29 -9|]
EDOs: 46, 177c, 223bc, 269bce
Badness: 0.0425
Hitchcock[edit]
Commas: 121/120, 176/175, 2200/2187
POTE generator: ~11/9 = 339.340
Map: [<1 3 6 -2 6|, <0 -5 -13 17 -9|]
EDOs: 7, 39, 46, 53, 99
Badness: 0.0352
13-limit[edit]
Commas: 121/120, 169/168, 176/175, 325/324
POTE generator: ~11/9 = 339.419
Map: [<1 3 6 -2 6 2|, <0 -5 -13 17 -9 6|]
EDOs: 7, 39, 46, 53, 99
Badness: 0.0224
Hemiamity[edit]
Commas: 4375/4374, 5120/5103, 3025/3024
POTE generator: ~ 243/200 = 339.493
Map: [<2 1 -1 13 13|, <0 5 13 -17 -14|]
EDOs: 14, 46, 106, 152, 350
Parakleismic[edit]
In the 5-limit, parakleismic is an undoubted microtemperament, tempering out the parakleisma, |8 14 -13>, with the 118edo tuning giving errors well under a cent. It has a generator a very slightly (half a cent or less) flat 6/5, 13 of which give 32/3, and 14 64/5. However while 118 no longer has better than a cent of accuracy in the 7 or 11 limits, it is a decent temperament there nonetheless, and this allows an extension, with the 7-limit wedgie being <<13 14 35 -8 19 42|| and adding 3136/3125 and 4375/4374, and the 11-limit wedgie <<13 14 35 -36 ...|| adding 385/384. For the 7-limit 99edo may be preferred, but in the 11-limit it is best to stick with 118.
Comma: 124440064/1220703125
POTE generator: ~6/5 = 315.240
Map: [<1 5 6|, <0 -13 -14|]
EDOs: 19, 61, 80, 99, 118, 453, 571, 689, 1496
Badness: 0.0433
7-limit[edit]
Commas: 3136/3125, 4375/4374
POTE generator: ~6/5 = 315.181
Map: [<1 5 6 12|, <0 -13 -14 -35|]
EDOs: 19, 80, 99, 217, 316, 415
Badness: 0.0274
11-limit[edit]
Commas: 385/384, 3136/3125, 4375/4374
POTE generator: ~6/5 = 315.251
Map: [<1 5 6 12 -6|, <0 -13 -14 -35 36|]
EDOs: 19, 99, 118
Badness: 0.0497
Parkleismic[edit]
Commas: 176/175, 1375/1372, 2200/2187
POTE generator: ~6/5 = 315.060
Map: [<1 5 6 12 20|, <0 -13 -14 -35 -63|]
EDOs: 80, 179, 259cd
Badness: 0.0559
13-limit[edit]
Commas: 169/168, 176/175, 325/324, 1375/1372
POTE generator: ~6/5 = 315.075
Map: [<1 5 6 12 20 10|, <0 -13 -14 -35 -63 -24|]
EDOs: 15, 19, 80, 179
Badness: 0.0366
Paradigmic[edit]
Commas: 540/539, 896/891, 3136/3125
POTE generator: ~6/5 = 315.096
Map: [<1 5 6 12 -1|, <0 -13 -14 -35 17|]
EDOs: 19, 80, 99e, 179e
Badness: 0.0417
13-limit[edit]
Commas: 169/168, 325/324, 540/539, 832/825
POTE generator: ~6/5 = 315.080
Map: [<1 5 6 12 -1 10|, <0 -13 -14 -35 17 -24|]
EDOs: 19, 80, 99e, 179e
Badness: 0.0358
Semiparakleismic[edit]
Commas: 3025/3024, 3136/3125, 4375/4374
POTE generator: 315.181
Map: [<2 10 12 24 19|, <0 -13 -14 -35 -23|]
EDOs: 80, 118, 198, 316, 514c, 830c
Badness: 0.0342
Quincy[edit]
Commas: 4375/4374, 823543/819200
POTE generator: ~1728/1715 = 16.613
Map: [<1 2 2 3|, <0 -30 -49 -14|]
EDOs: 72, 217, 289
Badness: 0.0797
11-limit[edit]
Commas: 441/440, 4000/3993, 41503/41472
POTE generator: ~100/99 = 16.613
Map: [<1 2 2 3 4|, <0 -30 -49 -14 -39|]
EDOs: 72, 217, 289
Badness: 0.0309
13-limit[edit]
Commas: 364/363, 441/440, 676/675, 4375/4374
POTE generator: ~100/99 = 16.602
Map: [<1 2 2 3 4 5|, <0 -30 -49 -14 -39 -94|]
EDOs: 72, 145, 217, 289
Badness: 0.0239
17-limit[edit]
Commas: 364/363, 441/440, 595/594, 1001/1000, 1156/1155
POTE generator: ~100/99 = 16.602
Map: [<1 2 2 3 4 5 5|, <0 -30 -49 -14 -39 -94 -66|]
EDOs: 72, 145, 217, 289
Badness: 0.0147
19-limit[edit]
Commas: 343/342, 364/363, 441/440, 595/594, 676/675, 2601/2600
POTE generator: ~100/99 = 16.594
Map: [<1 2 2 3 4 5 5 4|, <0 -30 -49 -14 -39 -94 -66 18|]
EDOs: 72, 145, 217
Badness: 0.0152