Ragismic microtemperaments

From TD Xenharmonic Wiki
Jump to navigation Jump to search

The ragisma is 4375/4374 with a monzo of |-1 -7 4 1>, the smallest 7-limit superparticular ratio. Since (10/9)^4=4375/4374 * 32/21, the minor tone 10/9 tends to be an interval of relatively low complexity in temperaments tempering out the ragisma, though when looking at microtemperaments the word "relatively" should be emphasized. Even so mitonic uses it as a generator, which ennealimmal and enneadecal can do also, and amity reaches it in three generators. We also have 7/6 = 4375/4374 * (27/25)^2, so 27/25 also tends to relatively low complexity, with the same caveat about "relatively"; however 27/25 is the period for ennealimmal.

Ennealimmal[edit]

Ennealimmal temperament tempers out the two smallest 7-limit superparticular commas, 2401/2400 and 4375/4374, leading to a temperament of unusual efficiency. It also tempers out the ennealimma comma, |1 -27 18>, which leads to the identification of (27/25)^9 with the octave, and gives ennealimmal a period of 1/9 octave. While 27/25 is a 5-limit interval, two periods equates to 7/6 because of identification by 4375/4374, and this represents 7/6 with such accuracy (a fifth of a cent flat) that there is no realistic possibility of treating ennealimmal as anything other than 7-limit. Its wedgie is <<18 27 18 1 -22 -34||.

Aside from 10/9 which has already been mentioned, possible generators include 36/35, 21/20, 6/5, 7/5 and the neutral thirds pair 49/40 and 60/49, all of which have their own interesting advantages. Possible tunings are 441, 612, or 3600 equal, though its hardly likely anyone could tell the difference.

If 1/9 of an octave is too small of a period for you, you could try generator-period pairs of [3, 5], [5/3, 3], [6/5, 4/3], [4/3, 8/5] or [10/9, 4/3] (for example.) In particular, people fond of the idea of "tritaves" as analogous to octaves might consider the 28 or 43 note MOS with generator an approximate 5/3 within 3; for instance as given by 451/970 of a "tritave". Tetrads have a low enough complexity that (for example) there are nine 1-3/2-7/4-5/2 tetrads in the 28 notes to the tritave MOS, which is equivalent in average step size to a 17 2/3 to the octave MOS.

valid range: [26.667, 66.667] (45bcd to 18bcd)

nice range: [48.920, 49.179]

strict range: [48.920, 49.179]

Commas: 2401/2400, 4375/4374

POTE generators: 36/35: 49.0205; 10/9: 182.354; 6/5: 315.687; 49/40: 350.980

Map: [<9 1 1 2|, <0 2 3 2|]

Wedgie: <<18 27 18 1 -22 -34||

EDOs: 27, 45, 72, 99, 171, 270, 441, 612, 3600

Badness: 0.00361

11 limit hemiennealimmal[edit]

Commas: 2401/2400, 4375/4374, 3025/3024

valid range: [13.333, 22.222] (90bcd, 54c)

nice range: [17.304, 17.985]

strict range: [17.304, 17.985]

POTE generator: 99/98: 17.6219 or 6/5: 315.7114

Map: [<18 0 -1 22 48|, <0 2 3 2 1|]

EDOs: 72, 198, 270, 342, 612, 954, 1566

Badness: 0.00628

13 limit hemiennealimmal[edit]

Commas: 676/675, 1001/1000, 1716/1715, 3025/3024

valid range: [16.667, 22.222] (72 to 54cf)

nice range: [17.304, 18.309]

strict range: [17.304, 18.309]

POTE generator ~99/98 = 17.7504

Map: [<18 0 -1 22 48 -19|, <0 2 3 2 1 6|]

EDOs: 72, 198, 270

Badness: 0.0125

Semiennealimmal[edit]

Commas: 2401/2400, 4375/4374, 4000/3993

POTE generator: ~140/121 = 250.3367

Map: [<9 3 4 14 18|, <0 6 9 6 7|]

EDOs: 72, 369, 441

Badness: 0.0342

13 limit semiennealimmal[edit]

Commas: 1575/1573, 2080/2079, 2401/2400, 4375/4374

POTE generator: ~140/121 = 250.3375

Map: [<9 3 4 14 18 -8|, <0 6 9 6 7 22|]

EDOs: 72, 441

Badness: 0.0261

Quadraennealimmal[edit]

Commas: 2401/2400 4375/4374 234375/234256

POTE generator: ~77/75 = 45.595

Map: [<9 1 1 12 -7|, [0 8 12 8 23]]

EDOs: 342, 1053, 1395, 1737, 4869d, 6606cd

Badness: 0.0213

Ennealimnic[edit]

Commas: 243/242, 441/440, 4375/4356

valid range: [44.444, 53.333] (27e to 45e)

nice range: [48.920, 52.592]

strict range: [48.920, 52.592]

POTE generator: ~36/35 = 49.395

Map: [<9 1 1 12 -2|, <0 2 3 2 5|]

EDOs: 72, 171, 243

Badness: 0.0203

13 limit ennealimnic[edit]

Commas: 243/242, 364/363, 441/440, 625/624

valid range: [48.485, 50.000] (99ef to 72)

nice range: [48.825, 52.592]

strict range: [48.825, 50.000]

POTE generator: ~36/35 = 49.341

Map: [<9 1 1 12 -2 -33|, <0 2 3 2 5 10|]

EDOs: 72, 171, 243

Badness: 0.0233

17 limit ennealimnic[edit]

Commas: 243/242, 364/363, 375/374, 441/440, 595/594

valid range: [48.485, 50.000] (99ef to 72)

nice range: [46.363, 52.592]

strict range: [48.485, 50.000]

POTE generator: ~36/35 = 49.335

Map: [<9 1 1 12 -2 -33 -3|, <0 2 3 2 5 10 6|]

EDOs: 72, 171, 243

Badness: 0.0146

Ennealim[edit]

Commas: 169/168, 243/242, 325/324, 441/440

POTE generator: ~36/35 = 49.708

Map: [<9 1 1 12 -2 20|, <0 2 3 2 5 2|]

EDOs: 27e, 45f, 72, 315ff, 387cff, 459cdfff

Badness: 0.0207

Ennealiminal[edit]

Commas: 385/384, 1375/1372, 4375/4374

POTE generator: ~36/35 = 49.504

Map: [<9 1 1 12 51|, <0 2 3 2 -3|]

EDOs: 27, 45, 72, 171e, 243e, 315e

Badness: 0.0311

13-limit[edit]

Commas: 169/168, 325/324, 385/384, 1375/1372

POTE generator: ~36/35 = 49.486

Map: [<9 1 1 12 51 20|, <0 2 3 2 -3 2|]

EDOs: 27, 45f, 72, 171ef, 243ef

Badness: 0.0303

Trinealimmal[edit]

Commas: 2401/2400, 4375/4374, 2097152/2096325

POTE generator: ~6/5 = 315.644

Map: [<27 1 0 34 177|, <0 2 3 2 -4|]

EDOs: 27, 243, 270, 783, 1053, 1323, 10854bcde

Badness: 0.0298

Semihemiennealimmal[edit]

Commas: 2401/2400, 4375/4374, 3025/3024, 4225/4224

POTE generator: ~39/32 = 342.139

Map: [<18 0 -1 22 48 88|, <0 4 6 4 2 -3|]

EDOs: 126, 144, 270, 684, 954

Badness: 0.0131

Gamera[edit]

Commas: 4375/4374, 589824/588245

POTE generator ~8/7 = 230.336

Map: [<1 6 10 3|, <0 -23 -40 -1|]

EDOs: 26, 73, 99, 224, 323, 422, 735

Badness: 0.0376

Hemigamera[edit]

Commas: 3025/3024, 4375/4374, 202397184/201768035

POTE generator: ~8/7 = 230.337

Map: [<2 12 20 6 5|, <0 -23 -40 -1 5|]

EDOs: 26, 198, 224, 422, 646, 1068d

Badness: 0.0410

13-limit[edit]

Commas: 1716/1715 2080/2079 2200/2197 3025/3024

Map: [<2 12 20 6 5 17|, <0 -23 -40 -1 5 -25|]

EDOs: 26, 198, 224, 422, 646f, 1068df

Badness: 0.0204

Supermajor[edit]

The generator for supermajor temperament is a supermajor third, 9/7, tuned about 0.0002 cents flat. 37 of these give (2^15)/3, 46 give (2^19)/5, and 75 give (2^30)/7, leading to a wedgie of <<37 46 75 -13 15 45||. This is clearly quite a complex temperament; it makes up for it, to the extent it does, with extreme accuracy: 1106 or 1277 can be used as tunings, leading to accuracy even greater than that of ennealimmal. The 80 note MOS is presumably the place to start, and if that isn't enough notes for you, there's always the 171 note MOS.

Commas: 4375/4374, 52734375/52706752

POTE generator: ~9/7 = 435.082

Map: [<1 15 19 30|, <0 -37 -46 -75|]

EDOs: 11, 80, 171, 764, 1106, 1277, 3660, 4937, 6214

Badness: 0.0108

Semisupermajor[edit]

Commas: 3025/3024, 4375/4374, 35156250/35153041

POTE generator: ~9/7 = 435.082

Map: [<2 30 38 60 41|, <0 -37 -46 -75 -47|]

EDOs: 80, 342, 764, 1106, 1448, 2554, 4002f, 6556cf

Badness: 0.0128

Enneadecal[edit]

Enndedecal temperament tempers out the enneadeca, |-14 -19 19>, and as a consequence has a period of 1/19 octave. This is because the enneadeca is the amount by which nineteen just minor thirds fall short of an octave. If to this we add 4375/4374 we get the 7-limit temperament we are considering here, but note should be taken of the fact that it makes for a reasonable 5-limit microtemperament also, where the generator can be 25/24, 27/25, 10/9, 5/4 or 3/2. To this we may add possible 7-limit generators such as 225/224, 15/14 or 9/7. Since enneadecal tempers out 703125/702464, the amount by which 81/80 falls short of three stacked 225/224, we can equate the 225/224 generator with (81/80)^(1/3). This is the interval needed to adjust the 1/3 comma meantone flat fifths and major thirds of 19edo up to just ones. 171edo is a good tuning for either the 5 or 7 limits, and 494edo shows how to extend the temperament to the 11 or 13 limit, where it is accurate but very complex. Fans of near-perfect fifths may want to use 665edo for a tuning.

Commas: 4375/4374, 703125/702464

POTE generator: ~3/2 = 701.880

Map: [<19 0 14 -37|, <0 1 1 3|]

Generators: 28/27, 3

EDOs: 19, 152, 171, 665, 836, 1007, 2185

Badness: 0.0110

Deca[edit]

Commas: 4375/4374, 165288374272/164794921875

POTE generator: ~460992/390625 = 284.423

Map: [<10 4 2 9|, <0 5 6 11|]

EDOs: 80, 190, 270, 1270, 1540, 1810, 2080

Badness: 0.0806

11-limit[edit]

Commas: 3025/3024, 4375/4374, 422576/421875

POTE generator: ~33/28 = 284.418

Map: [<10 4 2 9 18|, <0 5 6 11 7|]

EDOs: 80, 190, 270, 1000, 1270

Badness: 0.0243

13-limit[edit]

Commas: 1001/1000, 3025/3024, 4225/4224, 4375/4374

POTE generator: ~33/28 = 284.398

Map: [<10 4 2 9 18 37|, <0 5 6 11 7 0|]

EDOs: 80, 190, 270, 730, 1000

Badness: 0.0168

Mitonic[edit]

Commas: 4375/4374, 2100875/2097152

POTE generator: ~10/9 = 182.458

Map: [<1 16 32 -15|, <0 -17 -35 21|]

EDOs: 46, 125, 171

Badness: 0.0252

Abigail[edit]

Commas: 4375/4374, 2147483648/2144153025

POTE generator: 208.899

Map: [<2 7 13 -1|, <0 -11 -24 19|]

Wedgie: <<22 48 -38 25 -122 -223||

EDOs: 46, 132, 178, 224, 270, 494, 764, 1034, 1798

Badness: 0.0370

11-limit[edit]

Comma: 3025/3024, 4375/4374, 20614528/20588575

POTE generator: 208.901

Map: [<2 7 13 -1 1|, <0 -11 -24 19 17|]

EDOs: 46, 132, 178, 224, 270, 494, 764

Badness: 0.0129

13-limit[edit]

Commas: 1716/1715, 2080/2079, 3025/3024, 4096/4095

POTE generator: 208.903

Map: [<2 7 13 -1 1 -2|, <0 -11 -24 19 17 27|]

EDOs: 46, 178, 224, 270, 494, 764, 1258

Badness: 0.00886

Semidimi[edit]

Commas: 4375/4374, 3955078125/3954653486

POTE generator: ~35/27 = 449.127

Map: [<1 36 48 61|, <0 -55 -73 -93|]

Wedgie: <<55 73 93 -12 -7 11||

EDOs: 171, 863, 8419, 1205, 1376, 1547, 1718, 4983, 6701, 8419

Badness: 0.0151

Brahmagupta[edit]

Commas: 4375/4374, 70368744177664/70338939985125

POTE generator: ~27/20 = 519.716

Map: [<7 2 -8 53|, <0 3 8 -11|]

Wedgie: <<21 56 -77 40 -181 -336||

EDOs: 217, 224, 441, 1106, 1547

Badness: 0.0291

11-limit[edit]

Commas: 4000/3993, 4375/4374, 131072/130977

POTE generator: ~27/20 = 519.704

Map: [<7 2 -8 53 3|, <0 3 8 -11 7|]

EDOs: 217, 224, 441, 665, 1771e

Badness: 0.0522

Neusec[edit]

Commas: 3025/3024, 4375/4374, 235298/234375

POTE generator: ~12/11 = 151.547

Map: [<2 11 15 19 15|, <0 -31 -41 -53 -32|]

EDOs: 190, 388

Badness: 0.0591

13-limit[edit]

Commas: 847/845, 1001/1000, 3025/3024, 4375/4374

POTE generator: ~12/11 = 151.545

Map: [<2 11 15 19 15 17|, <0 -31 -41 -53 -32 -38|]

EDOs: 190, 198, 388

Badness: 0.0309

Quasithird[edit]

Commas: 4375/4374, 1153470752371588581/1152921504606846976

POTE generator: ~5103/4096 = 380.388

Map: [<4 0 -11 48|, <0 5 16 -29|]

Wedgie: <<20 64 -116 55 -240 -449||

EDOs: 164, 224, 388, 612, 1448, 2060

Badness: 0.0618

11-limit[edit]

Commas: 3025/3024, 4375/4374, 4296700485/4294967296

POTE generator: ~5103/4096 = 380.387

Map: [<4 0 -11 48 43|, <0 5 16 -29 -23|]

EDOs: 164, 224, 388, 612, 836, 1448

Badness: 0.0211

13-limit[edit]

Commas: 2200/2197, 3025/3024, 4375/4374, 468512/468195

POTE generator: ~5103/4096 = 380.385

Map: [<4 0 -11 48 43 11|, <0 5 16 -29 -23 3|]

EDOs: 164, 224, 388, 612, 836, 1448f, 2284f

Badness: 0.0295

Semidimfourth[edit]

Commas: 4375/4374, 235298/234375

POTE generator: ~35/27 = 448.457

Map: [<1 21 28 36|, <0 -31 -41 -53|]

Wedgie: <<31 41 53 -7 -3 8||

EDOs: 91, 99, 289, 388, 875, 1263d, 1651d

Badness: 0.0552

Acrokleismic[edit]

Commas: 4375/4374, 2202927104/2197265625

POTE generator: ~6/5 = 315.557

Map: [<1 10 11 27|, <0 -32 -33 -92|]

Wedgie: <<32 33 92 -22 56 121||

EDOs: 19, 251, 270

Badness: 0.0562

11-limit[edit]

Commas: 4375/4374, 41503/41472, 172032/171875

POTE generator: ~6/5 = 315.558

Map: [<1 10 11 27 -16|, <0 -32 -33 -92 74|]

EDOs: 19, 251, 270, 829, 1099, 1369, 1639

Badness: 0.0369

13-limit[edit]

Commas: 676/675, 1001/1000, 4375/4374, 10985/10976

POTE generator: ~6/5 = 315.557

Map: [<1 10 11 27 -16 25|, <0 -32 -33 -92 74 -81|]

EDOs: 19, 251, 270

Badness: 0.0268

Counteracro[edit]

Commas: 4375/4374, 5632/5625, 117649/117612

POTE generator: ~6/5 = 315.553

Map: [<1 10 11 27 55|, <0 -32 -33 -92 -196|]

EDOs: 270, 1061e, 1331c, 1601c, 1871bc, 4012bcde

Badness: 0.0426

13-limit[edit]

Commas: 676/675, 1716/1715, 4225/4224, 4375/4374

POTE generator: ~6/5 = 315.554

Map: [<1 10 11 27 55 25|, <0 -32 -33 -92 -196 -81|]

EDOs: 270, 1331c, 1601c, 1871bcf, 2141bcf

Badness: 0.0260

Seniority[edit]

Commas: 4375/4374 201768035/201326592

POTE generator: ~3087/2560 = 322.804

Map: [<1 11 19 2|, <0 -35 -62 3|]

Wedgie: <<35 62 -3 17 -103 -181||

EDOs: 26, 145, 171, 2710d

Badness: 0.0449

Orga[edit]

Commas: 4375/4374 54975581388800/54936068900769

POTE generator: ~8/7 = 231.104

Map: [<2 21 36 5|, <0 -29 -51 1|]

Wedgie: <<58 102 -2 27 -166 -291||

EDOs: 26, 244, 270, 836, 1106, 1376, 2482, 19856bd, 23714bd

Badness: 0.0402

11-limit[edit]

Commas: 3025/3024 4375/4374 5767168/5764801

POTE generator: ~8/7 = 231.103

Map: [<2 21 36 5 2|, <0 -29 -51 1 8|]

EDOs: 26, 244, 270, 566, 836, 1106, 7472e, 8578de, 9684cde, 10790cde, 11896cde

Badness: 0.0162

Quatracot[edit]

Commas: 4375/4374, 1483154296875/1473173782528

POTE generator: ~448/405 = 176.805

Map: [<2 7 7 23|, <0 -13 -8 -59|]

Wedgie: <<26 16 118 -35 114 229||

EDOs: 190, 224, 414, 638, 1052c, 1690bc

Badness: 0.1760

11-limit[edit]

Commas: 3025/3024, 4375/4374, 1265625/1261568

POTE generator: ~448/405 = 176.806

Map: [<2 7 7 23 19|, <0 -13 -8 -59 -41|]

EDOs: 190, 224, 414, 638, 1052c

Badness: 0.0410

13-limit[edit]

Commas: 625/624, 729/728, 1575/1573, 2200/2197

POTE generator: ~448/405 = 176.804

Map: [<2 7 7 23 19 13|, <0 -13 -8 -59 -41 -19|]

EDOs: 190, 224, 414, 638, 1690bc, 2328bcde

Badness: 0.0226

Nearly Micro[edit]

Octoid[edit]

Commas: 4375/4374, 16875/16807

valid range: [578.571, 600.000] (56bcd to 8d)

nice range: [582.512, 584.359]

strict range: [582.512, 584.359]

POTE generator: ~7/5 = 583.940

Map: [<8 1 3 3|, <0 3 4 5|]

Generators: 49/45, 7/5

EDOs: 72, 152, 224

Badness: 0.0427

11-limit[edit]

Commas: 540/539, 1375/1372, 4000/3993

valid range: [581.250, 586.364] (64cd, 88bcde)

nice range: [582.512, 585.084]

strict range: [582.512, 585.084]

POTE generator: ~7/5 = 583.692

Map: [<8 1 3 3 16|, <0 3 4 5 3|]

EDOs: 72, 152, 224

Badness: 0.0141

13-limit[edit]

Commas: 540/539, 1375/1372, 4000/3993, 625/624

POTE generator: ~7/5 = 583.905

Map: [<8 1 3 3 16 -21|, <0 3 4 5 3 13|]

EDOs: 72, 224

Badness: 0.0153

Music[edit]

http://www.archive.org/details/Dreyfus

play

Octopus[edit]

Commas: 169/168, 325/324, 364/363, 540/539

POTE generator: ~7/5 = 583.892

Map: [<8 1 3 3 16 14|, <0 3 4 5 3 4|]

EDOs: 72, 152, 224f

Badness: 0.0217

Amity[edit]

The generator for amity temperament is the acute minor third, which means an ordinary 6/5 minor third raised by an 81/80 comma to 243/200, and from this it derives its name. Aside from the ragisma it tempers out the 5-limit amity comma, 1600000/1594323, 5120/5103 and 6144/6125. It can also be described as the 46&53 temperament, or by its wedgie, <<5 13 -17 9 -41 -76||. 99edo is a good tuning for amity, with generator 28/99, and MOS of 11, 18, 25, 32, 46 or 53 notes are available. If you are looking for a different kind of neutral third this could be the temperament for you.

In the 5-limit amity is a genuine microtemperament, with 58/205 being a possible tuning. Another good choice is (64/5)^(1/13), which gives pure major thirds.

5-limit[edit]

Comma: 1600000/1594323

POTE generator: ~243/200 = 339.519

Map: [<1 3 6|, <0 -5 -13|]

EDOs: 7, 39, 46, 53, 152, 205, 463, 668, 873

Badness: 0.0220

7-limit[edit]

Commas: 4375/4374, 5120/5103

POTE generator: ~243/200 = 339.432

Map: [<1 3 6 -2|, <0 -5 -13 17|]

Wedgie: <<5 13 -17 9 -41 -76||

EDOs: 7, 39, 46, 53, 99, 251, 350

Badness: 0.0236

11-limit[edit]

Commas: 540/539, 4375/4374, 5120/5103

POTE generator: ~243/200 = 339.464

Map: [<1 3 6 -2 21|, <0 -5 -13 17 -62|]

EDOs: 53, 99e, 152, 555de, 707de, 859bde

Badness: 0.0315

13-limit[edit]

Commas: 352/351, 540/539, 625/624, 847/845

POTE generator: ~243/200 = 339.481

Map: [<1 3 6 -2 21 17|, <0 -5 -13 17 -62 -47|]

EDOS: 53, 99ef, 152f, 205

Badness: 0.0280

Accord[edit]

Commas: 126/125, 100352/98415

POTE generator: ~243/200 = 338.993

Map: [<1 3 6 11|, <0 -5 -13 -29|]

Wedgie: <<5 13 29 9 32 31||

EDOs: 46, 131c, 177c

Badness: 0.0956

11-limit[edit]

Commas: 121/120, 126/125, 896/891

POTE generator: ~11/9 = 339.047

Map: [<1 3 6 11 6|, <0 -5 -13 -29 -9|]

EDOs: 46, 177c, 223bc, 269bce

Badness: 0.0425

Hitchcock[edit]

Commas: 121/120, 176/175, 2200/2187

POTE generator: ~11/9 = 339.340

Map: [<1 3 6 -2 6|, <0 -5 -13 17 -9|]

EDOs: 7, 39, 46, 53, 99

Badness: 0.0352

13-limit[edit]

Commas: 121/120, 169/168, 176/175, 325/324

POTE generator: ~11/9 = 339.419

Map: [<1 3 6 -2 6 2|, <0 -5 -13 17 -9 6|]

EDOs: 7, 39, 46, 53, 99

Badness: 0.0224

Hemiamity[edit]

Commas: 4375/4374, 5120/5103, 3025/3024

POTE generator: ~ 243/200 = 339.493

Map: [<2 1 -1 13 13|, <0 5 13 -17 -14|]

EDOs: 14, 46, 106, 152, 350

Parakleismic[edit]

In the 5-limit, parakleismic is an undoubted microtemperament, tempering out the parakleisma, |8 14 -13>, with the 118edo tuning giving errors well under a cent. It has a generator a very slightly (half a cent or less) flat 6/5, 13 of which give 32/3, and 14 64/5. However while 118 no longer has better than a cent of accuracy in the 7 or 11 limits, it is a decent temperament there nonetheless, and this allows an extension, with the 7-limit wedgie being <<13 14 35 -8 19 42|| and adding 3136/3125 and 4375/4374, and the 11-limit wedgie <<13 14 35 -36 ...|| adding 385/384. For the 7-limit 99edo may be preferred, but in the 11-limit it is best to stick with 118.

Comma: 124440064/1220703125

POTE generator: ~6/5 = 315.240

Map: [<1 5 6|, <0 -13 -14|]

EDOs: 19, 61, 80, 99, 118, 453, 571, 689, 1496

Badness: 0.0433

7-limit[edit]

Commas: 3136/3125, 4375/4374

POTE generator: ~6/5 = 315.181

Map: [<1 5 6 12|, <0 -13 -14 -35|]

EDOs: 19, 80, 99, 217, 316, 415

Badness: 0.0274

11-limit[edit]

Commas: 385/384, 3136/3125, 4375/4374

POTE generator: ~6/5 = 315.251

Map: [<1 5 6 12 -6|, <0 -13 -14 -35 36|]

EDOs: 19, 99, 118

Badness: 0.0497

Parkleismic[edit]

Commas: 176/175, 1375/1372, 2200/2187

POTE generator: ~6/5 = 315.060

Map: [<1 5 6 12 20|, <0 -13 -14 -35 -63|]

EDOs: 80, 179, 259cd

Badness: 0.0559

13-limit[edit]

Commas: 169/168, 176/175, 325/324, 1375/1372

POTE generator: ~6/5 = 315.075

Map: [<1 5 6 12 20 10|, <0 -13 -14 -35 -63 -24|]

EDOs: 15, 19, 80, 179

Badness: 0.0366

Paradigmic[edit]

Commas: 540/539, 896/891, 3136/3125

POTE generator: ~6/5 = 315.096

Map: [<1 5 6 12 -1|, <0 -13 -14 -35 17|]

EDOs: 19, 80, 99e, 179e

Badness: 0.0417

13-limit[edit]

Commas: 169/168, 325/324, 540/539, 832/825

POTE generator: ~6/5 = 315.080

Map: [<1 5 6 12 -1 10|, <0 -13 -14 -35 17 -24|]

EDOs: 19, 80, 99e, 179e

Badness: 0.0358

Semiparakleismic[edit]

Commas: 3025/3024, 3136/3125, 4375/4374

POTE generator: 315.181

Map: [<2 10 12 24 19|, <0 -13 -14 -35 -23|]

EDOs: 80, 118, 198, 316, 514c, 830c

Badness: 0.0342

Quincy[edit]

Commas: 4375/4374, 823543/819200

POTE generator: ~1728/1715 = 16.613

Map: [<1 2 2 3|, <0 -30 -49 -14|]

EDOs: 72, 217, 289

Badness: 0.0797

11-limit[edit]

Commas: 441/440, 4000/3993, 41503/41472

POTE generator: ~100/99 = 16.613

Map: [<1 2 2 3 4|, <0 -30 -49 -14 -39|]

EDOs: 72, 217, 289

Badness: 0.0309

13-limit[edit]

Commas: 364/363, 441/440, 676/675, 4375/4374

POTE generator: ~100/99 = 16.602

Map: [<1 2 2 3 4 5|, <0 -30 -49 -14 -39 -94|]

EDOs: 72, 145, 217, 289

Badness: 0.0239

17-limit[edit]

Commas: 364/363, 441/440, 595/594, 1001/1000, 1156/1155

POTE generator: ~100/99 = 16.602

Map: [<1 2 2 3 4 5 5|, <0 -30 -49 -14 -39 -94 -66|]

EDOs: 72, 145, 217, 289

Badness: 0.0147

19-limit[edit]

Commas: 343/342, 364/363, 441/440, 595/594, 676/675, 2601/2600

POTE generator: ~100/99 = 16.594

Map: [<1 2 2 3 4 5 5 4|, <0 -30 -49 -14 -39 -94 -66 18|]

EDOs: 72, 145, 217

Badness: 0.0152