Arcturus

From TD Xenharmonic Wiki
Jump to navigation Jump to search

Having an ~5:3 as a generator, this temperament is the application of the Pythagorean principle of tuning a stack of the next higher prime number and then factoring out powers of the equivalence to tritave composition. However, a heptatonic MOS (2L 5s) will not suffice to produce an understandable rendition of it because a very close ~5:3 generates a L:s ratio between 4:1 and 5:1, which is beginning to get too lopsided to still be a complete presentation of a temperament. Below is.a list of MOS families which present it completely (however smearily) using a generator of 845.3 to 951.0 cents:

Mini chromatic

Anti-chromatic

Generator cents L s 2g Notes
6\13 877.825 146.304 0.00 1755.651 L=1 s=0
43\93 879.399 143.158 20.451 1758.797 L=7 s=1
37\80 879.654 142.647 23.774 1759.38 L=6 s=1
68\147 879.816 142.323 25.877 1759.632
31\67 880.009 141.937 28.387 1760.081 L=5 s=1
87\188 880.16 141.634 30.35 1760.32
56\121 880.243 141.468 31.437 1760.487
81\175 880.3335 141.288 32.605 1760.667
25\54 880.535 140.886 35.221 1761.069 L=4 s=1
94\203 880.708 140.5385 37.477 1761.4165
69\149 880.711 140.413 38.294 1761.542
113\244 880.823 140.308 38.9745 1761.647
44\95 880.9055 140.144 40.041 1761.811 L=7 s=2
107\231 880.992 139.971 41.168 1761.984
63\136 881.053 139.85 41.955 1762.105
82\177 881.132 139.692 42.982 1762.263
19\41 881.394 139.167 46.389 1762.788 L=3 s=1
89\192 881.635 138.684 49.53 1763.271
70\151 881.701 138.553 50.383 1763.402
121\261 881.794 138.4565 51.01 1763.4985
51\110 881.8155 138.324 51.8715 1763.631
134\289 881.875 138.204 52.649 1763.751
83\179 881.912 138.131 53.172 1763.824
115\248 881.955 138.045 53.684 1763.91
32\69 882.066 137.823 55.129 1764.132 L=5 s=2
109\235 882.183 137.588 56.654 1764.367
77\166 882.232 137.491 57.288 1764.464
122\263 882.276 137.404 57.854 1764.551
45\97 882.35 137.2545 58.823 1764.7005 L=7 s=3
103\222 882.439 137.078 59.972 1764.877
58\125 882.507 136.941 60.863 1765.014
71\153 882.607 136.742 62.155 1765.213
13\28 883.0505 135.854 67.93 1766.101 L=2 s=1
72\155 883.489 134.9775 73.624 1766.9775
59\127 883.585 134.784 74.88 1767.171
105\226 883.652 134.652 75.742 1767.303
46\99 883.737 134.482 76.847 1767.473 L=7 s=4
125\269 883.808 134.339 77.775 1767.616
79\170 883.85 134.256 78.316 1767.699
112\241 883.896 134.163 78.919 1767.792
33\71 884.007 133.94 80.364 1768.0145 L=5 s=3
119\256 884.112 133.731 81.725 1768.224
86\185 884.152 133.651 82.247 1768.304
139\299 884.186 133.582 82.694 1768.373 Golden Arcturus is near here
53\114 884.24 133.4705 83.419 1768.4845
126\271 884.303 133.347 84.219 1768.608
73\157 884.3485 133.258 84.8005 1768.697
93\200 884.409 133.137 85.588 1768.818
20\43 884.63 132.6945 88.463 1769.2605 L=3 s=2
87\187 884.867 132.2215 91.538 1769.7335
67\144 884.937 132.08 92.456 1769.875
114\245 884.991 131.972 93.157 1769.983
47\101 885.068 131.819 94.156 1770.136 L=7 s=5
121\260 885.141 131.674 95.098 1770.281
74\159 885.187 131.582 95.696 1770.373
101\217 885.242 131.4715 96.4125 1770.4835
27\58 885.393 131.169 98.377 1770.786 L=4 s=3
88\189 885.566 130.822 100.6325 1771.133
61\131 885.643 130.669 101.631 1771.286
95\204 885.714 130.526 102.556 1771.429
34\73 885.842 130.271 104.217 1771.684 L=5 s=4
75\161 886.004 129.947 106.3205 1772.008
41\88 886.138 129.679 108.065 1772.276 L=6 s=5
48\103 886.348 129.259 110.7935 1772.696 L=7 s=6
7\15 887.579 126.797 1775.158 L=1 s=1

Mini enharmonic

Enharmonic

Anti-enharmonic