Trans-Arcturus enneadecatonic

From TD Xenharmonic Wiki
Jump to navigation Jump to search

Having 2 large steps and 17 small steps, this MOS uses a generator which is too sharp to be an "ordinary" ~5:3. However, the accumulated sharpness of the generator leads to "ordinary" ~8:5s and ~5:3s in three steps after factoring out tritaves.

Generator cents L s 3g Notes
9\19 900.926 100.103 800.823 L=1 s=1
55\116 901.789 114.773 98.377 803.412 L=7 s=6
46\97 901.958 117.647 98.039 803.919 L=6 s=5
83\175 902.07 119.5515 97.815 804.255
37\78 902.209 121.92 97.536 804.673 L=5 s=4
102\215 902.323 123.848 97.309 805.013
65\137 902.387 124.946 97.18 805.207
93\196 902.458 126.15 97.0385 805.42
28\59 902.623 128.946 96.71 805.913 L=4 s=3
103\217 902.771 131.4715 96.4125 806.359
75\158 902.827 132.415 96.3015 806.521
122\257 902.874 133.211 96.208 806.666
47\99 902.948 134.482 96.058 806.89 L=7 s=5
113\238 903.029 135.854 95.897 807.132
66\139 903.0865 136.831 95.782 807.3045
85\179 903.163 138.131 95.629 807.534
19\40 903.429 142.647 95.098 808.331 L=3 s=2
86\181 903.6913 147.1125 94.572 809.119
67\141 903.766 148.3795 94.423 809.343
115\242 903.822 149.327 94.312 809.51
48\101 903.899 150.65 94.156 809.743
125\263 903.971 151.867 94.013 809.958 Golden Trans-Arcturus[19] is near here
77\162 904.016 152.626 93.924 810.092
106\223 904.068 153.521 93.818 810.25
29\61 904.2081 155.898 93.539 810.669 L=5 s=3
97\204 904.361 158.496 93.233 811.128
68\143 904.426 159.605 93.103 811.324
107\225 904.485 160.6095 92.9845 811.50
39\82 904.5884 162.362 92.778 811.81 L=7 s=4
88\185 904.714 164.493 92.5275 812.186
49\103 904.8135 166.19 92.328 812.4855
59\124 904.9625 168.722 92.03 812.9325
10\21 905.693 181.139 90.569 815.124 L=2 s=1
51\107 906.5393 195.528 88.876 817.663
41\86 906.746 199.042 88.463 818.283
72\151 906.8925 201.532 88.17 818.7225
31\65 907.086 204.826 87.7825 819.304 L=7 s=3
83\174 907.254 207.685 87.446 819.808
52\109 907.355 209.3895 87.246 820.109
73\153 907.469 211.328 87.0175 820.451
21\44 907.751 216.131 86.4525 821.299 L=5 s=2
74\155 908.03 220.872 85.895 822.135
53\111 908.141 222.7515 85.674 822.467
85\178 908.237 224.388 85.481 822.756
32\67 908.396 227.099 85.162 823.234
75\157 908.577 230.173 84.8005 823.777
43\90 908.712 232.461 84.531 824.18
54\113 908.899 235.64 84.157 824.741
11\23 909.631 248.081 82.694 826.937 L=3 s=1
45\94 910.51 263.036 80.934 829.576
34\71 910.795 267.881 80.364 830.431
57\119 911.0205 271.708 79.914 831.1065
23\48 911.353 277.368 79.248 832.105 L=7 s=2
58\121 911.681 282.9355 78.593 833.088 cube root of 3*phi is near here
35\73 911.896 286.596 78.1625 833.734
47\98 912.162 291.116 77.631 834.531
12\25 912.938 304.313 76.078 836.86 L=4 s=1
37\77 913.926 321.109 74.102 839.824
25\52 914.401 329.1845 73.152 841.249
38\79 914.864 337.055 72.226 842.638
13\27 915.756 352.214 70.443 845.313 L=5 s=1
27\56 917.014 373.598 67.927 849.087
14\29 918.185 393.508 65.5847 852.601 L=6 s=1
41\89 920.301 429.474 61.353 858.947 L=7 s=1
1/2 950.9775 0.00 950.9775 L=1 s=0