Trans-Arcturus enneadecatonic
Jump to navigation
Jump to search
Having 2 large steps and 17 small steps, this MOS uses a generator which is too sharp to be an "ordinary" ~5:3. However, the accumulated sharpness of the generator leads to "ordinary" ~8:5s and ~5:3s in three steps after factoring out tritaves.
Generator | cents | L | s | 3g | Notes | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
9\19 | 900.926 | 100.103 | 800.823 | L=1 s=1 | |||||||
55\116 | 901.789 | 114.773 | 98.377 | 803.412 | L=7 s=6 | ||||||
46\97 | 901.958 | 117.647 | 98.039 | 803.919 | L=6 s=5 | ||||||
83\175 | 902.07 | 119.5515 | 97.815 | 804.255 | |||||||
37\78 | 902.209 | 121.92 | 97.536 | 804.673 | L=5 s=4 | ||||||
102\215 | 902.323 | 123.848 | 97.309 | 805.013 | |||||||
65\137 | 902.387 | 124.946 | 97.18 | 805.207 | |||||||
93\196 | 902.458 | 126.15 | 97.0385 | 805.42 | |||||||
28\59 | 902.623 | 128.946 | 96.71 | 805.913 | L=4 s=3 | ||||||
103\217 | 902.771 | 131.4715 | 96.4125 | 806.359 | |||||||
75\158 | 902.827 | 132.415 | 96.3015 | 806.521 | |||||||
122\257 | 902.874 | 133.211 | 96.208 | 806.666 | |||||||
47\99 | 902.948 | 134.482 | 96.058 | 806.89 | L=7 s=5 | ||||||
113\238 | 903.029 | 135.854 | 95.897 | 807.132 | |||||||
66\139 | 903.0865 | 136.831 | 95.782 | 807.3045 | |||||||
85\179 | 903.163 | 138.131 | 95.629 | 807.534 | |||||||
19\40 | 903.429 | 142.647 | 95.098 | 808.331 | L=3 s=2 | ||||||
86\181 | 903.6913 | 147.1125 | 94.572 | 809.119 | |||||||
67\141 | 903.766 | 148.3795 | 94.423 | 809.343 | |||||||
115\242 | 903.822 | 149.327 | 94.312 | 809.51 | |||||||
48\101 | 903.899 | 150.65 | 94.156 | 809.743 | |||||||
125\263 | 903.971 | 151.867 | 94.013 | 809.958 | Golden Trans-Arcturus[19] is near here | ||||||
77\162 | 904.016 | 152.626 | 93.924 | 810.092 | |||||||
106\223 | 904.068 | 153.521 | 93.818 | 810.25 | |||||||
29\61 | 904.2081 | 155.898 | 93.539 | 810.669 | L=5 s=3 | ||||||
97\204 | 904.361 | 158.496 | 93.233 | 811.128 | |||||||
68\143 | 904.426 | 159.605 | 93.103 | 811.324 | |||||||
107\225 | 904.485 | 160.6095 | 92.9845 | 811.50 | |||||||
39\82 | 904.5884 | 162.362 | 92.778 | 811.81 | L=7 s=4 | ||||||
88\185 | 904.714 | 164.493 | 92.5275 | 812.186 | |||||||
49\103 | 904.8135 | 166.19 | 92.328 | 812.4855 | |||||||
59\124 | 904.9625 | 168.722 | 92.03 | 812.9325 | |||||||
10\21 | 905.693 | 181.139 | 90.569 | 815.124 | L=2 s=1 | ||||||
51\107 | 906.5393 | 195.528 | 88.876 | 817.663 | |||||||
41\86 | 906.746 | 199.042 | 88.463 | 818.283 | |||||||
72\151 | 906.8925 | 201.532 | 88.17 | 818.7225 | |||||||
31\65 | 907.086 | 204.826 | 87.7825 | 819.304 | L=7 s=3 | ||||||
83\174 | 907.254 | 207.685 | 87.446 | 819.808 | |||||||
52\109 | 907.355 | 209.3895 | 87.246 | 820.109 | |||||||
73\153 | 907.469 | 211.328 | 87.0175 | 820.451 | |||||||
21\44 | 907.751 | 216.131 | 86.4525 | 821.299 | L=5 s=2 | ||||||
74\155 | 908.03 | 220.872 | 85.895 | 822.135 | |||||||
53\111 | 908.141 | 222.7515 | 85.674 | 822.467 | |||||||
85\178 | 908.237 | 224.388 | 85.481 | 822.756 | |||||||
32\67 | 908.396 | 227.099 | 85.162 | 823.234 | |||||||
75\157 | 908.577 | 230.173 | 84.8005 | 823.777 | |||||||
43\90 | 908.712 | 232.461 | 84.531 | 824.18 | |||||||
54\113 | 908.899 | 235.64 | 84.157 | 824.741 | |||||||
11\23 | 909.631 | 248.081 | 82.694 | 826.937 | L=3 s=1 | ||||||
45\94 | 910.51 | 263.036 | 80.934 | 829.576 | |||||||
34\71 | 910.795 | 267.881 | 80.364 | 830.431 | |||||||
57\119 | 911.0205 | 271.708 | 79.914 | 831.1065 | |||||||
23\48 | 911.353 | 277.368 | 79.248 | 832.105 | L=7 s=2 | ||||||
58\121 | 911.681 | 282.9355 | 78.593 | 833.088 | cube root of 3*phi is near here | ||||||
35\73 | 911.896 | 286.596 | 78.1625 | 833.734 | |||||||
47\98 | 912.162 | 291.116 | 77.631 | 834.531 | |||||||
12\25 | 912.938 | 304.313 | 76.078 | 836.86 | L=4 s=1 | ||||||
37\77 | 913.926 | 321.109 | 74.102 | 839.824 | |||||||
25\52 | 914.401 | 329.1845 | 73.152 | 841.249 | |||||||
38\79 | 914.864 | 337.055 | 72.226 | 842.638 | |||||||
13\27 | 915.756 | 352.214 | 70.443 | 845.313 | L=5 s=1 | ||||||
27\56 | 917.014 | 373.598 | 67.927 | 849.087 | |||||||
14\29 | 918.185 | 393.508 | 65.5847 | 852.601 | L=6 s=1 | ||||||
41\89 | 920.301 | 429.474 | 61.353 | 858.947 | L=7 s=1 | ||||||
1/2 | 950.9775 | 0.00 | 950.9775 | L=1 s=0 |