5L 3s
5L 3s refers to the structure of moment of symmetry scales with generators ranging from 2\5 (two degrees of 5edo = 480¢) to 3\8 (three degrees of 8edo = 450¢). In the case of 8edo, L and s are the same size; in the case of 5edo, s becomes so small it disappears (and all that remains are the five equal L's). The spectrum looks like this:
generator | tetrachord | g in cents | 2g | 3g | 4g | Comments | ||||
---|---|---|---|---|---|---|---|---|---|---|
2\5 | 1 0 1 | 480.000 | 960.000 | 240.00 | 720.000 | |||||
21\53 | 10 1 10 | 475.472 | 950.943 | 226.415 | 701.887 | Vulture/Buzzard is around here | ||||
19\48 | 9 1 9 | 475 | 950 | 225 | 700 | |||||
17\43 | 8 1 8 | 474.419 | 948.837 | 223.256 | 697.674 | |||||
15\38 | 7 1 7 | 473.684 | 947.368 | 221.053 | 694.737 | |||||
13\33 | 6 1 6 | 472.727 | 945.455 | 218.181 | 690.909 | |||||
11\28 | 5 1 5 | 471.429 | 942.857 | 214.286 | 685.714 | |||||
9\23 | 4 1 4 | 469.565 | 939.130 | 208.696 | 678.261 | L/s = 4 | ||||
pi 1 pi | 467.171 | 934.3425 | 201.514 | 668.685 | L/s = pi | |||||
7\18 | 3 1 3 | 466.667 | 933.333 | 200.000 | 666.667 | L/s = 3 | ||||
e 1 e | 465.535 | 931.069 | 196.604 | 662.139 | L/s = e | |||||
19\49 | 8 3 8 | 465.306 | 930.612 | 195.918 | 661.2245 | |||||
50\129 | 21 8 21 | 465.116 | 930.233 | 195.349 | 660.465 | |||||
131\338 | 55 21 55 | 465.089 | 930.1775 | 195.266 | 660.335 | |||||
212\547 | 89 34 89 | 465.082 | 930.1645 | 195.247 | 660.329 | |||||
81\209 | 34 13 34 | 465.072 | 930.1435 | 195.215 | 660.287 | |||||
31\80 | 13 5 13 | 465 | 930 | 195 | 660 | |||||
12\31 | 5 2 5 | 464.516 | 929.032 | 193.549 | 658.065 | |||||
5\13 | 2 1 2 | 461.538 | 923.077 | 184.615 | 646.154 | |||||
√3 1 √3 | 459.417 | 918.8345 | 178.252 | 637.669 | ||||||
13\34 | 5 3 5 | 458.824 | 917.647 | 176.471 | 635.294 | |||||
34\89 | 13 8 13 | 458.427 | 916.854 | 175.281 | 633.708 | |||||
89\233 | 34 21 34 | 458.369 | 916.738 | 175.107 | 633.473 | |||||
233\610 | 89 55 89 | 458.361 | 916.721 | 175.082 | 633.443 | Golden father | ||||
144\377 | 55 34 55 | 458.355 | 916.711 | 175.066 | 633.422 | |||||
55\144 | 21 13 21 | 458.333 | 916.666 | 175 | 633.333 | |||||
21\55 | 8 5 8 | 458.182 | 916.364 | 174.545 | 632.727 | |||||
pi 2 pi | 457.883 | 915.777 | 173.665 | 631.553 | ||||||
8\21 | 3 2 3 | 457.143 | 914.286 | 171.429 | 628.571 | Optimum rank range (L/s=3/2) father | ||||
11\29 | 4 3 4 | 455.172 | 910.345 | 165.517 | 620.690 | |||||
14\37 | 5 4 5 | 454.054 | 908.108 | 162.162 | 616.216 | |||||
17\45 | 6 5 6 | 453.333 | 906.667 | 160 | 613.333 | |||||
20\53 | 7 6 7 | 452.83 | 905.66 | 158.491 | 611.321 | |||||
23\61 | 8 7 8 | 452.459 | 904.918 | 157.377 | 609.836 | |||||
26\69 | 9 8 9 | 452.174 | 904.348 | 156.522 | 608.696 | |||||
29\77 | 10 9 10 | 451.948 | 903.896 | 155.844 | 607.792 | |||||
3\8 | 1 1 1 | 450.000 | 900.000 | 150.000 | 600.000 |
The only notable harmonic entropy minimum is Vulture/Buzzard, in which four generators make a 3/1 (and three generators approximate an octave plus 8/7). The rest of this region is a kind of wasteland in terms of harmonious MOSes.
By a weird coincidence, the other generator for this MOS will generate the same pattern within a tritave equivalence. By yet another weird coincidence, this MOS belongs to a temperament which has Bohlen-Pierce as its index-2 subtemperament. In addition to being harmonious, this tuning of the MOS gives an L/s ratio between 3/1 and 3/2, which is squarely in the middle of the range, being thus neither too exaggerated nor too equalized to be recognizable as such, unlike in octaves, where the only notable harmonic entropy minimum is near a greatly exaggerated 10/1 L/s ratio.
generator | tetrachord | g in cents | 2g | 3g | 4g | Comments | ||||
---|---|---|---|---|---|---|---|---|---|---|
2\5 | 1 0 1 | 760.782 | 1521.564 | 380.391 | 1141.173 | |||||
27\68 | 13 1 13 | 755.188 | 1510.376 | 363.609 | 1118.797 | |||||
~6626 515 6626 | 755.132 | 1510.265 | 363.442 | 1118.574 | 2g=12/5 minus quarter comma | |||||
25\63 | 12 1 12 | 754.744 | 1509.488 | 362.277 | 1117.021 | |||||
23\58 | 11 1 11 | 754.2235 | 1508.447 | 360.716 | 1114.939 | |||||
21\53 | 10 1 10 | 753.605 | 1507.21 | 358.859 | 1112.464 | |||||
19\48 | 9 1 9 | 752.857 | 1505.714 | 356.617 | 1109.474 | |||||
17\43 | 8 1 8 | 751.936 | 1503.871 | 353.852 | 1105.788 | |||||
15\38 | 7 1 7 | 750.771 | 1501.543 | 350.36 | 1101.132 | |||||
28/71 | 13 2 13 | 750.067 | 1500.1335 | 348.245 | 1098.312 | |||||
41\104 | 19 3 19 | 749.809 | 1466.618 | 347.4725 | 1097.282 | 3g=11/3 near here | ||||
13\33 | 6 1 6 | 749.255 | 1498.51 | 345.81 | 1095.065 | |||||
24\61 | 11 2 11 | 748.31 | 1496.62 | 342.976 | 1091.286 | |||||
35\89 | 16 3 16 | 747.96 | 1495.92 | 341.924 | 1089.884 | |||||
46\117 | 21 4 21 | 747.777 | 1495.554 | 341.377 | 1089.154 | |||||
57\145 | 26 5 26 | 747.665 | 1495.33 | 341.04 | 1088.705 | |||||
5+√29 2 5+√29 | 747.648 | 1495.297 | 340.99 | 1088.638 | ||||||
68\173 | 31 6 31 | 747.589 | 1495.178 | 340.813 | 1088.402 | |||||
147\374 | 67 13 67 | 747.56 | 1495.12 | 340.725 | 1088.285 | 4g=45/8 near here | ||||
79\201 | 36 7 36 | 747.535 | 1495.069 | 340.649 | 1088.183 | |||||
11\28 | 5 1 5 | 747.197 | 1494.393 | 339.635 | 1086.831 | |||||
20\51 | 9 2 9 | 745.865 | 1491.729 | 335.639 | 1081.50 | |||||
29\74 | 13 3 13 | 745.361 | 1490.721 | 334.127 | 1079.488 | |||||
38/97 | 17 4 17 | 745.096 | 1490.192 | 333.332 | 1078.428 | |||||
2+√5 1 2+√5 | 754.051 | 1490.101 | 333.197 | 1078.247 | ||||||
47\120 | 21 5 21 | 744.932 | 1489.865 | 332.842 | 1077.7745 | |||||
9\23 | 4 1 4 | 744.243 | 1488.487 | 330.775 | 1075.018 | L/s = 4 | ||||
43\110 | 19 5 19 | 743.4915 | 1486.983 | 328.5195 | 1072.011 | |||||
77\197 | 34 9 34 | 743.404 | 1486.807 | 328.256 | 1071.66 | 4g=39/7 near here | ||||
34\87 | 15 4 15 | 743.293 | 1486.586 | 327.923 | 1071.216 | |||||
25\64 | 11 3 11 | 742.951 | 1485.902 | 326.899 | 1069.85 | |||||
16\41 | 7 2 7 | 742.226 | 1484.453 | 324.724 | 1066.95 | |||||
23\59 | 10 3 10 | 741.44 | 1482.88 | 322.365 | 1063.805 | |||||
3+√13 2 3+√13 | 741.289 | 1482.577 | 321.911 | 1063.20 | ||||||
30\77 | 13 4 13 | 741.021 | 1482.043 | 321.109 | 1062.131 | |||||
pi 1 pi | 740.449 | 1480.898 | 319.392 | 1056.841 | L/s = pi | |||||
7\18 | 3 1 3 | 739.649 | 1479.298 | 316.992 | 1056.642 | L/s = 3 | ||||
89\229 | 38 13 38 | 739.188 | 1478.376 | 315.608 | 1054.796 | 3g=18/5 near here | ||||
82\211 | 35 12 35 | 739.148 | 1478.297 | 315.49 | 1054.639 | |||||
75\193 | 32 11 32 | 739.102 | 1478.203 | 315.35 | 1054.452 | |||||
68\175 | 29 10 29 | 739.045 | 1478.091 | 315.181 | 1054.227 | |||||
61/157 | 26 9 26 | 738.976 | 1477.952 | 314.973 | 1053.949 | |||||
54\139 | 23 8 23 | 738.889 | 1477.778 | 314.712 | 1053.601 | |||||
47\121 | 20 7 20 | 738.776 | 1477.552 | 314.373 | 1053.149 | |||||
40\103 | 17 6 17 | 738.623 | 1477.247 | 313.915 | 1052.538 | |||||
33\85 | 14 5 14 | 738.406 | 1476.812 | 313.263 | 1051.669 | |||||
26\67 | 11 4 11 | 738.072 | 1476.144 | 312.261 | 1050.333 | |||||
e 1 e | 737.855 | 1478.71 | 311.61 | 1049.465 | L/s = e | |||||
19\49 | 8 3 8 | 737.493 | 1474.986 | 310.523 | 1048.016 | |||||
164\423 | 69 26 69 | 737.401 | 1474.802 | 310.248 | 1047.649 | 3g=18/5 minus quarter comma near here | ||||
145\374 | 61 23 61 | 737.389 | 1474.778 | 310.212 | 1047.601 | |||||
126\325 | 53 20 53 | 737.373 | 1474.747 | 310.165 | 1047.538 | |||||
107\276 | 45 17 45 | 737.352 | 1474.704 | 310.101 | 1047.453 | |||||
88\227 | 37 14 37 | 737.322 | 1474.644 | 310.01 | 1047.332 | |||||
69\178 | 29 11 29 | 737.275 | 1474.549 | 309.869 | 1047.144 | |||||
50\129 | 21 8 21 | 737.192 | 1474.384 | 309.621 | 1046.812 | |||||
131\338 | 55 21 55 | 737.148 | 1474.296 | 309.49 | 1046.638 | |||||
212\547 | 89 34 89 | 737.138 | 1474.276 | 309.459 | 1046.597 | |||||
81\209 | 34 13 34 | 737.121 | 1474.243 | 309.409 | 1046.53 | |||||
31\80 | 13 5 13 | 737.008 | 1474.015 | 309.068 | 1046.075 | |||||
12\31 | 5 2 5 | 736.241 | 1472.481 | 306.767 | 1043.007 | |||||
1+√2 1 1+√2 | 735.542 | 1471.084 | 304.6715 | 1040.214 | Silver false father | |||||
17\44 | 7 3 7 | 734.846 | 1469.693 | 302.584 | 1037.41 | |||||
22\57 | 9 4 9 | 734.088 | 1468.176 | 300.309 | 1034.397 | |||||
27\70 | 11 5 11 | 733.611 | 1467.222 | 298.879 | 1032.49 | |||||
59\153 | 24 11 24 | 733.434 | 1466.867 | 298.346 | 1031.779 | |||||
32\83 | 13 6 13 | 733.284 | 1466.568 | 297.897 | 1031.181 | 2g=7/3 near here | ||||
5\13 | 2 1 2 | 731.521 | 1463.042 | 292.609 | 1024.13 | |||||
53\138 | 21 11 21 | 730.461 | 1460.922 | 289.428 | 1018.889 | |||||
101\263 | 40 21 40 | 730.409 | 1460.817 | 289.271 | 1019.679 | 3g=39/11 near here | ||||
48\125 | 19 10 19 | 730.35 | 1460.701 | 289.097 | 1019.448 | |||||
43\112 | 17 9 17 | 730.215 | 1460.43 | 288.69 | 1018.905 | |||||
38\99 | 15 8 15 | 730.043 | 1460.087 | 288.175 | 1018.218 | |||||
71\185 | 28 15 28 | 729.9395 | 1459.879 | 287.8635 | 1017.803 | |||||
104\271 | 41 22 41 | 729.902 | 1459.803 | 287.75 | 1017.651 | 4g=27/5 near here | ||||
33\86 | 13 7 13 | 729.82 | 1459.64 | 287.505 | 1017.325 | |||||
28\73 | 11 6 11 | 729.547 | 1459.034 | 286.596 | 1016.113 | |||||
23\60 | 9 5 9 | 729.083 | 1458.1655 | 285.293 | 1014.376 | |||||
41\107 | 16 9 16 | 728.7865 | 1457.573 | 284.4045 | 1013.191 | 3g=99/28 near here | ||||
59\154 | 23 13 23 | 728.671 | 1457.342 | 284.058 | 1012.729 | |||||
77\201 | 30 17 30 | 728.61 | 1457.219 | 283.874 | 1012.483 | |||||
95\248 | 37 21 37 | 728.5715 | 1457.143 | 283.7595 | 1012.331 | Golden BP is index-2 near here | ||||
18\47 | 7 4 7 | 728.408 | 1456.817 | 283.27 | 1011.678 | |||||
√3 1 √3 | 728.159 | 1456.318 | 282.522 | 1010.6815 | ||||||
49\128 | 19 11 19 | 728.092 | 1456.184 | 282.321 | 1010.413 | 4g=27/5 minus third comma near here | ||||
31\81 | 12 7 12 | 727.909 | 1455.817 | 281.771 | 1009.68 | |||||
13\34 | 5 3 5 | 727.218 | 1454.436 | 279.699 | 1006.917 | |||||
34\89 | 13 8 13 | 726.59 | 1453.179 | 277.814 | 1004.403 | |||||
89\233 | 34 21 34 | 726.498 | 1452.996 | 277.538 | 1004.036 | |||||
233\610 | 89 55 89 | 726.4845 | 1452.969 | 277.4985 | 1003.983 | Golden false father | ||||
144\377 | 55 34 55 | 726.476 | 1452.952 | 277.473 | 1003.95 | |||||
55\144 | 21 13 21 | 726.441 | 1452.882 | 277.368 | 1003.809 | |||||
21\55 | 8 5 8 | 726.201 | 1452.402 | 276.468 | 1002.849 | |||||
pi 2 pi | 725.736 | 1451.472 | 275.252 | 1000.988 | ||||||
8\21 | 3 2 3 | 724.554 | 1449.109 | 271.708 | 996.226 | Optimum rank range (L/s=3/2) false father | ||||
~543 361 543 | 724.511 | 1449.022 | 271.579 | 996.09 | 4g=16/3 | |||||
27\71 | 10 7 10 | 723.279 | 1446.557 | 267.881 | 991.16 | |||||
46\121 | 17 12 17 | 723.057 | 1446.115 | 267.217 | 990.274 | |||||
65\171 | 24 17 24 | 722.965 | 1445.931 | 266.941 | 989.907 | 3g=7/2 near here | ||||
19\50 | 7 5 7 | 722.743 | 1445.486 | 266.274 | 989.017 | |||||
11\29 | 4 3 4 | 721.431 | 1442.862 | 262.338 | 983.77 | |||||
25\66 | 9 7 9 | 720.4375 | 1440.875 | 259.3575 | 979.795 | |||||
64\169 | 23 18 23 | 720.267 | 1440.534 | 258.848 | 979.113 | |||||
167\441 | 60 47 60 | 720.2415 | 1440.483 | 258.7965 | 979.001 | |||||
437\1154 | 157 123 157 | 720.238 | 1440.475 | 258.758 | 978.996 | |||||
270\713 | 97 76 97 | 720.235 | 1440.471 | 258.751 | 978.987 | |||||
103\272 | 37 29 37 | 720.226 | 1440.451 | 258.722 | 978.947 | |||||
39\103 | 14 11 14 | 720.158 | 1440.315 | 258.518 | 978.676 | |||||
14\37 | 5 4 5 | 719.659 | 1439.317 | 257.021 | 976.679 | |||||
31\82 | 11 9 11 | 719.032 | 1438.064 | 255.14 | 974.172 | |||||
79\209 | 28 23 28 | 718.921 | 1437.842 | 254.807 | 973.728 | |||||
206\545 | 73 60 73 | 718.904 | 1437.808 | 254.757 | 973.661 | |||||
539\1426 | 191 117 191 | 718.902 | 1437.803 | 254.75 | 973.652 | |||||
333\881 | 118 97 118 | 718.90 | 1437.80 | 254.745 | 973.6455 | |||||
127\336 | 45 37 45 | 718.893 | 1437.787 | 254.726 | 973.619 | |||||
48\127 | 17 14 17 | 718.849 | 1437.698 | 254.592 | 973.441 | |||||
17\45 | 6 5 6 | 718.516 | 1437.032 | 253.549 | 972.11 | |||||
20\53 | 7 6 7 | 717.719 | 1435.438 | 251.202 | 968.9205 | |||||
~401 344 401 | 717.695 | 1435.3905 | 251.131 | 968.826 | 4g=21/4 | |||||
23\61 | 8 7 8 | 717.131 | 1434.261 | 249.437 | 966.567 | |||||
~6682 5875 6682 | 716.9925 | 1433.985 | 249.0225 | 966.015 | 6g=12 | |||||
26\69 | 9 8 9 | 716.679 | 1433.357 | 248.081 | 964.76 | |||||
29\77 | 10 9 10 | 716.321 | 1432.641 | 247.007 | 963.328 | |||||
32\85 | 11 10 11 | 716.03 | 1432.06 | 246.135 | 962.1655 | |||||
35\93 | 12 11 12 | 715.7895 | 1431.759 | 245.4135 | 961.203 | |||||
38/101 | 13 12 13 | 715.587 | 1431.174 | 244.806 | 960.393 | 2g=16\7 near here | ||||
3\8 | 1 1 1 | 713.233 | 1426.466 | 237.744 | 950.9775 |
.