Bohlen-Pierce
The Bohlen-Pierce (BP) scale is a nonoctave scale, a 13-part equal division of the perfect-twelfth (3/1) or Tritave (13edt). Each step is about 146 ¢, making it a macrotonal scale. It is closely related to the rank two temperament bohpier. Bohlen-Pierce is normally thought of (if not in these terms, then in fact) as a temperament defined on the 3.5.7 subgroup. However, it (or at least 3.5.7-limit 13edt) can be extended to the 3.5.7.11/4 subgroup. This extension is controversial because of the presence of 2 in the denominator of 11/4, but the interval is present in the sense that 3^(12\13) provides an approximation to it. Chords of Bohlen-Pierce, from this extended perspective, may be found listed on the page chords of bohpier. Bohlen-Pierce was discovered independently by Heinz Bohlen, John Pierce, Kees van Prooijen, and perhaps others, usually noticed for its good approximation of odd-number just ratios 3:5, 5:7, 3:7, etc.; but not necessarily 4:11, 5:6, 6:7, etc.
External image: http://www.ronsword.com/images/Sword_BP_guitars.jpg
- WARNING: MediaWiki doesn't have very good support for external images.
- Furthermore, since external images can break, we recommend that you replace the above with a local copy of the image.
External image: http://ronsword.com/bpguitar.JPG
- WARNING: MediaWiki doesn't have very good support for external images.
- Furthermore, since external images can break, we recommend that you replace the above with a local copy of the image.
Ron Sword and his 9-string 13-tone BP Touchstick/Guitar crossover instrument (aka: "the Bohlen-Box")
Triple Bohlen-Pierce[edit]
Proposed by Paul Erlich, is the Triple Bohlen-Pierce Scale, or 39th root of 3. It approximates additional odd harmonics and can be used in a variety of ways, for both just intonation chords and harmonies, as standard Bohlen-Pierce scale interlocking three times with calm sounding quarter-tones, and for various JI modulations.
External image: http://www.ronsword.com/images/3BP3.JPG
- WARNING: MediaWiki doesn't have very good support for external images.
- Furthermore, since external images can break, we recommend that you replace the above with a local copy of the image.
(triple bohlen-pierce 39√3 Classical Guitar by Ron Sword)
Theory[edit]
Bohlen-Pierce Scale Research by Elaine Walker
Sword, Ronald. "Bohlen Pierce Scales for Guitar" IAAA Press, UK-USA. First Ed: May 2009.
EDTs compatible with the BP nonatonic scale[edit]
The Lambda MOS family of 4L+5s is well known for accurately representing the 3.5.7 subgroup when the generator is near the boundary of propriety, such as in the case of the Bohlen Pierce scale. Below is a list of the equal-temperaments which contain a 4L+5s scale using generators between 422.7 cents and 475.5 cents.
L=1 s=0 4 edt
L=1 s=1 9 edt (5flat40 7sharp18)
L=2 s=1 13 (5flat7 7flat3)
L=3 s=1 17 (5sharp10 7flat12)
L=3 s=2 22 (~14edo)
L=4 s=1 21
L=4 s=3 31
L=5 s=1 25
L=5 s=2 30 (~19edo) (5sharp3 7flat8)
L=5 s=3 35 (~22edo) (5flat14 7sharp0)
L=5 s=4 40
L=6 s=1 29
L=6 s=5 49 (~31EDO) (5sharp8 7sharp8) (Schism*)
L=7 s=1 33
L=7 s=2 38 (~24edo)
L=7 s=3 43 (~27edo) (5sharp0 7flat6)
L=7 s=4 48 (5flat13 7flat0)
L=7 s=5 53
L=7 s=6 58 5sharp1 7sharp10 (Schism*)
- Schism, by which I mean, the most accurate value for 5/3 and-or 7/3 is found outside the 4L+5s MOS.
[Also, the way I see it, as 4edt and 9edt are comparable to 5edo and 7edo, then the "counterparts" of Blackwood and Whitewood would be found in multiples therein and would be octatonic and octadecatonic, eg. 12edt and 27edt.]
Generator | cents | L | s | notes | ||||||
---|---|---|---|---|---|---|---|---|---|---|
1/4 | 475.49 | 0 | ||||||||
8/33 | 461.08 | 403.445 | 57.635 | |||||||
7/29 | 459.09 | 393.505 | 65.585 | |||||||
13/54 | 457.88 | 387.435 | 70.455 | |||||||
6/25 | 456.47 | 380.39 | 76.08 | |||||||
17/71 | 455.4 | 375.03 | 80.37 | |||||||
11/46 | 454.815 | 372.12 | 82.695 | |||||||
16/67 | 454.2 | 369.03 | 85.17 | |||||||
5/21 | 452.85 | 362.28 | 90.57 | |||||||
19/80 | 451.71 | 356.62 | 94.91 | |||||||
14/59 | 451.31 | 354.6 | 96.7 | |||||||
23/97 | 450.98 | 352.94 | 98.04 | |||||||
9/38 | 450.46 | 350.36 | 100.1 | |||||||
22/93 | 449.925 | 347.67 | 102.255 | |||||||
13/55 | 449.55 | 345.81 | 103.74 | |||||||
17/72 | 449.07 | 343.41 | 105.66 | |||||||
448.42 | 340.15 | 108.27 | ||||||||
4/17 | 447.52 | 335.64 | 111.88 | Canonical BP scales are between here... | ||||||
19/81 | 446.14 | 328.73 | 117.41 | |||||||
15/64 | 445.77 | 327.1 | 118.87 | |||||||
445.53 | 325.71 | 119.82 | ||||||||
26/111 | 445.5 | 325.56 | 119.94 | |||||||
11/47 | 445.14 | 323.74 | 121.4 | |||||||
29/124 | 444.81 | 322.105 | 122.705 | Golden BP is near here | ||||||
18/77 | 444.61 | 321.1 | 123.51 | |||||||
25/107 | 444.38 | 319.955 | 120.425 | |||||||
7/30 | 443.79 | 316.99 | 126.8 | |||||||
24/103 | 443.17 | 313.915 | 129.265 | |||||||
17/73 | 442.92 | 312.65 | 130.27 | |||||||
27/116 | 442.7 | 311.53 | 131.17 | |||||||
10/43 | 442.315 | 309.62 | 132.695 | |||||||
23/99 | 441.87 | 307.39 | 134.48 | |||||||
13/56 | 441.525 | 305.67 | 135.845 | |||||||
16/69 | 441.03 | 303.21 | 137.82 | |||||||
3/13 | 438.91 | 292.61 | 146.3 | ...and here
Boundary of propriety for Lambda scale | ||||||
17/74 | 436.935 | 282.72 | 154.215 | |||||||
14/61 | 436.515 | 280.61 | 155.905 | |||||||
25/109 | 436.23 | 279.19 | 157.04 | |||||||
11/48 | 435.845 | 277.37 | 158.495 | |||||||
30/131 | 435.56 | 275.86 | 159.7 | |||||||
19/83 | 435.39 | 274.98 | 160.41 | |||||||
27/118 | 435.19 | 274.01 | 161.18 | |||||||
8/35 | 434.73 | 271.71 | 163.02 | |||||||
29/127 | 434.305 | 269.57 | 164.735 | |||||||
21/92 | 434.14 | 268.755 | 165.385 | |||||||
34/149 | 434 | 268.06 | 165.94 | Golden Lambda scale is near here
18\7*30\11=7 | ||||||
13/57 | 433.78 | 266.94 | 166.84 | 18\7*30\11=7 | ||||||
31/136 | 433.53 | 265.71 | 167.62 | |||||||
18/79 | 433.36 | 264.83 | 168.53 | |||||||
23/101 | 433.11 | 263.64 | 169.47 | |||||||
5/22 | 432.26 | 259.36 | 172.905 | |||||||
22/97 | 431.37 | 254.9 | 176.47 | |||||||
17/75 | 431.11 | 253.59 | 177.52 | |||||||
29/128 | 430.91 | 252.6 | 178.31 | |||||||
12/53 | 430.63 | 251.2 | 179.43 | |||||||
31/137 | 430.37 | 249.89 | 180.48 | |||||||
19/84 | 430.2 | 249.065 | 181.135 | |||||||
26/115 | 430.01 | 248.08 | 181.93 | |||||||
7/31 | 429.47 | 245.41 | 184.06 | |||||||
23/102 | 428.87 | 242.41 | 186.46 | |||||||
16/71 | 428.61 | 241.09 | 187.59 | |||||||
25/111 | 428.37 | 239.89 | 188.48 | |||||||
9/40 | 427.94 | 237.74 | 190.2 | |||||||
20/89 | 427.41 | 235.07 | 192.34 | |||||||
11/49 | 426.97 | 232.89 | 194.08 | |||||||
13/58 | 426.3 | 229.55 | 196.75 | |||||||
2/9 | 422.66 | 211.33 | Separatrix of Lambda and Anti-Lambda scales | |||||||
13/59 | 419.075 | 225.66 | 193.41 | |||||||
11/50 | 418.43 | 228.235 | 190.2 | |||||||
20/91 | 418.015 | 229.91 | 188.105 | |||||||
9/41 | 417.5 | 231.95 | 185.56 | |||||||
25/114 | 417.095 | 233.57 | 183.52 | |||||||
16/73 | 416.87 | 234.49 | 182.38 | |||||||
23/105 | 416.62 | 235.48 | 181.14 | |||||||
7/32 | 416.05 | 237.74 | 178.31 | |||||||
26/119 | 415.55 | 239.74 | 175.81 | |||||||
19/87 | 415.37 | 240.48 | 174.89 | |||||||
31/143 | 415.215 | 241.09 | 174.12 | |||||||
12/55 | 414.97 | 242.07 | 172.905 | |||||||
29/133 | 414.71 | 243.11 | 171.605 | |||||||
17/78 | 414.53 | 243.84 | 170.69 | |||||||
22/101 | 414.29 | 244.81 | 169.48 | |||||||
5/23 | 413.47 | 248.08 | 165.39 | |||||||
23/106 | 412.7 | 251.2 | 161.49 | |||||||
18/83 | 412.47 | 252.06 | 160.41 | |||||||
31/143 | 412.31 | 252.71 | 159.605 | |||||||
13/60 | 412.09 | 253.59 | 158.5 | |||||||
34/157 | 411.89 | 254.4 | 157.49 | Golden Anti-Lambda scale is near here | ||||||
21/97 | 411.76 | 254.9 | 156.86 | |||||||
29/134 | 411.625 | 255.49 | 156.13 | |||||||
8/37 | 411.23 | 257.02 | 154.21 | |||||||
27/125 | 410.82 | 258.67 | 152.16 | |||||||
19/88 | 410.65 | 259.36 | 151.29 | |||||||
30/139 | 410.49 | 259.98 | 150.51 | |||||||
11/51 | 410.23 | 261.05 | 149.17 | |||||||
25/116 | 409.9 | 262.34 | 147.565 | |||||||
14/65 | 409.75 | 263.35 | 146.3 | |||||||
17/79 | 409.28 | 264.83 | 144.45 | |||||||
3/14 | 407.56 | 271.71 | 135.85 | Boundary of propriety for Anti-Lambda scale | ||||||
16/75 | 405.75 | 278.95 | 126.8 | |||||||
13/61 | 405.345 | 280.62 | 124.72 | |||||||
23/108 | 405.05 | 281.77 | 123.275 | |||||||
10/47 | 404.7 | 283.29 | 121.4 | |||||||
27/127 | 404.35 | 284.54 | 119.81 | |||||||
17/80 | 404.165 | 285.29 | 118.87 | |||||||
24/113 | 403.955 | 286.135 | 117.82 | |||||||
7/33 | 403.445 | 288.175 | 115.27 | |||||||
25/118 | 402.955 | 290.13 | 112.83 | |||||||
18/85 | 402.77 | 290.89 | 111.88 | |||||||
29/137 | 402.6 | 291.54 | 111.06 | |||||||
11/52 | 402.35 | 292.61 | 109.73 | |||||||
26/123 | 402.05 | 293.8 | 108.24 | |||||||
402.01 | 293.9 | 108.11 | ||||||||
15/71 | 401.83 | 294.67 | 107.15 | |||||||
19/90 | 401.52 | 295.86 | 105.66 | |||||||
4\19 | 400.41 | 300.31 | 100.1 | |||||||
399.69 | 303.185 | 96.51 | ||||||||
17/81 | 399.18 | 305.25 | 93.92 | |||||||
13/62 | 398.8 | 306.77 | 92.03 | |||||||
22/105 | 398.515 | 307.94 | 90.57 | |||||||
9/43 | 398.08 | 309.62 | 88.46 | |||||||
23/110 | 397.68 | 311.23 | 86.45 | |||||||
14/67 | 397.42 | 312.26 | 85.16 | |||||||
19/91 | 397.11 | 313.51 | 83.6 | |||||||
5/24 | 396.24 | 316.99 | 79.25 | |||||||
16/77 | 395.21 | 321.11 | 74.1 | |||||||
11/53 | 394.745 | 322.93 | 71.77 | |||||||
17/82 | 394.31 | 324.72 | 69.58 | |||||||
6/29 | 393.505 | 327.92 | 65.585 | |||||||
13/63 | 392.47 | 332.09 | 60.38 | |||||||
7/34 | 391.58 | 335.64 | 55.94 | |||||||
8/39 | 390.145 | 341.38 | 48.77 | |||||||
1/5 | 380.39 | 0 |
Physical instruments tuned to the BP scale[edit]
Metallophone
Electronic Organ
Stredici
Kalimba (Mbira)
Compositions[edit]
A Mean Little Voice by Stephen Weigel
Links to available music written in BP at above website.
Bohl-en Roll by Carlo Serafini (blog entry)
Bohlen-Pierce electric guitar improvisation by Jean-Pierre Poulin
Bohlen-Pierce "Stretched Chroma" Acoustic Improvisation by Ron Sword
Roll'n'Peace by Jean-Pierre Poulin
Comets Over Flatland 1 by Randy Winchester
Comets Over Flatland 2 by Randy Winchester
Comets Over Flatland 3 by Randy Winchester
Comets Over Flatland 4 by Randy Winchester
Bohlen-Pierce Island audio by Chris Vaisvil
Bending the Rules by Chris Vaisvil
Bohlen-Pierce Canon by Kjell Hansen.
Bohlen's Pierced Waltz by Chris Vaisvil
The Complex Plane by Chris Vaisvil