4L 3s

From TD Xenharmonic Wiki
Jump to navigation Jump to search

4L 3s refers to the structure of moment of symmetry scales with generators ranging from 1\4edo (one degree of 4edo, 300¢) to 2\7edo (two degrees of 7edo, or approx. 342.857¢). The spectrum looks like this:

Generator Tetrachord g in cents 2g 3g 4g Comments
1\4 1 0 1 300.000 600.000 900.000 0.000
8\31 7 1 7 309.677 619.355 929.023 38.71 Myna is around here
7\27 6 1 6 311.111 622.222 933.333 44.444
6\23 5 1 5 313.043 626.087 939.13 52.174
5\19 4 1 4 315.789 631.579 947.368 63.158 L/s = 4
9\34 7 2 7 317.647 634.294 951.941 70.588 Hanson/Keemun is around here
pi 1 pi 319.272 638.545 957.817 77.089 L/s = pi
4\15 3 1 3 320.000 640.000 960.000 80.000 L/s = 3
e 1 e 321.6245 641.249 964.874 86.498 L/s = e
11\41 8 3 8 321.951 643.902 965.854 87.805
29\108 21 8 21 322.222 644.444 966.667 88.889
18\67 13 5 13 322.388 644.776 967.364 89.522
7\26 5 2 5 323.077 646.154 969.231 92.308 Orgone is around here
3\11 2 1 2 327.273 654.545 981.818 109.091 Boundary of propriety (generators

larger than this are proper)

√3 1 √3 330.217 660.434 990.651 120.868
8\29 5 3 5 331.034 662.069 993.013 124.138
21\76 13 8 13 331.579 663.158 994.739 126.316
34\123 21 13 21 331.707 663.415 995.122 126.829 Unnamed golden temperament
13\47 8 5 8 331.915 663.83 995.745 127.66
pi 2 pi 332.3165 664.633 996.9495 129.266
5\18 3 2 3 333.333 666.667 1000.000 133.333 Optimum rank range (L/s=3/2)
7\25 4 3 4 336.000 672.000 1008.000 144.000
9\32 5 4 5 337.5 675 1012.5 150 Sixix
11\39 6 5 6 338.462 676.923 1015.385 153.846 Sixix
13\46 7 6 7 339.130 678.261 1017.391 156.522 (17/14)^3=9/5
2\7 1 1 1 342.857 685.714 1028.571 171.429

There are two notable harmonic entropy minima: hanson/keemun, in which the generator is 6/5 and 6 of them make a 3/1, and myna, in which the generator is also 6/5 but now 10 of them make a 6/1 (so no 4/3's or 3/2's appear in this scale).