4L 3s
Jump to navigation
Jump to search
4L 3s refers to the structure of moment of symmetry scales with generators ranging from 1\4edo (one degree of 4edo, 300¢) to 2\7edo (two degrees of 7edo, or approx. 342.857¢). The spectrum looks like this:
Generator | Tetrachord | g in cents | 2g | 3g | 4g | Comments | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1\4 | 1 0 1 | 300.000 | 600.000 | 900.000 | 0.000 | |||||||
8\31 | 7 1 7 | 309.677 | 619.355 | 929.023 | 38.71 | Myna is around here | ||||||
7\27 | 6 1 6 | 311.111 | 622.222 | 933.333 | 44.444 | |||||||
6\23 | 5 1 5 | 313.043 | 626.087 | 939.13 | 52.174 | |||||||
5\19 | 4 1 4 | 315.789 | 631.579 | 947.368 | 63.158 | L/s = 4 | ||||||
9\34 | 7 2 7 | 317.647 | 634.294 | 951.941 | 70.588 | Hanson/Keemun is around here | ||||||
pi 1 pi | 319.272 | 638.545 | 957.817 | 77.089 | L/s = pi | |||||||
4\15 | 3 1 3 | 320.000 | 640.000 | 960.000 | 80.000 | L/s = 3 | ||||||
e 1 e | 321.6245 | 641.249 | 964.874 | 86.498 | L/s = e | |||||||
11\41 | 8 3 8 | 321.951 | 643.902 | 965.854 | 87.805 | |||||||
29\108 | 21 8 21 | 322.222 | 644.444 | 966.667 | 88.889 | |||||||
18\67 | 13 5 13 | 322.388 | 644.776 | 967.364 | 89.522 | |||||||
7\26 | 5 2 5 | 323.077 | 646.154 | 969.231 | 92.308 | Orgone is around here | ||||||
3\11 | 2 1 2 | 327.273 | 654.545 | 981.818 | 109.091 | Boundary of propriety (generators
larger than this are proper) | ||||||
√3 1 √3 | 330.217 | 660.434 | 990.651 | 120.868 | ||||||||
8\29 | 5 3 5 | 331.034 | 662.069 | 993.013 | 124.138 | |||||||
21\76 | 13 8 13 | 331.579 | 663.158 | 994.739 | 126.316 | |||||||
34\123 | 21 13 21 | 331.707 | 663.415 | 995.122 | 126.829 | Unnamed golden temperament | ||||||
13\47 | 8 5 8 | 331.915 | 663.83 | 995.745 | 127.66 | |||||||
pi 2 pi | 332.3165 | 664.633 | 996.9495 | 129.266 | ||||||||
5\18 | 3 2 3 | 333.333 | 666.667 | 1000.000 | 133.333 | Optimum rank range (L/s=3/2) | ||||||
7\25 | 4 3 4 | 336.000 | 672.000 | 1008.000 | 144.000 | |||||||
9\32 | 5 4 5 | 337.5 | 675 | 1012.5 | 150 | Sixix | ||||||
11\39 | 6 5 6 | 338.462 | 676.923 | 1015.385 | 153.846 | Sixix | ||||||
13\46 | 7 6 7 | 339.130 | 678.261 | 1017.391 | 156.522 | (17/14)^3=9/5 | ||||||
2\7 | 1 1 1 | 342.857 | 685.714 | 1028.571 | 171.429 |
There are two notable harmonic entropy minima: hanson/keemun, in which the generator is 6/5 and 6 of them make a 3/1, and myna, in which the generator is also 6/5 but now 10 of them make a 6/1 (so no 4/3's or 3/2's appear in this scale).