Orwell extensions

From TD Xenharmonic Wiki
Jump to navigation Jump to search

Orwell temperament has various extensions to the 13 limit.

Tuning Spectra[edit]

These spectra suggest possible tuning choices. For 13-limit orwell, the 5-limit minimax tuning featuring pure 6/5 eigenmonzos seems like an excellent choice, as it's right in the middle of the least squares range and very close to 13-limit least squares. Pure 13s, using the 16/13 eigenmonzo, might also please some people. For blair, pure 5/4s using the 5/4 eigenmonzo tuning is very close to 15-limit least squares and in general in the middle of the action. For winston, sticking with the 11/9 eigenmonzo minimax tuning seems reasonable.

Spectrum of Orwell Tunings by Eigenmonzos[edit]

Gencom: [2 7/6; 99/98 121/120 176/175 275/273]

Gencom map: [<1 0 3 1 3 8|, <0 7 -3 8 2 -19|]

Eigenmonzo Subminor Third
7/6 266.871
15/11 268.475
14/11 269.585
12/11 270.127
15/14 270.139
7\31 270.968
11/9 271.049
8/7 271.103
7/5 271.137
5/4 271.229
1361367/1000000 271.326 (7 limit least squares)
14/13 271.418 (13 and 15 limit minimax)
19\84 271.429
|0 119 -46 20 -16> 271.445 (11 limit least squares)
x^10 + 2x^3 = 8 271.508 (equal beating)
16/13 271.551
|0 90 -41 14> 271.561 (9 limit least squares)
6/5 271.564 (5 limit minimax)
|0 -211 30 -47 -5 142> 271.567 (13 limit least squares)
|0 -236 5 -51 -3 165> 271.570 (15 limit least squares)
1220703125/1033121304 271.590 (5 limit least squares)
13/12 271.593
13/10 271.612
18/13 271.618
10/9 271.623 (9 limit minimax)
15/13 271.641
12\53 271.698
4/3 271.708
13/11 271.942
16/15 272.067
9/7 272.514
5\22 272.727
11/10 273.001
11/8 275.659

Spectrum of Winston Tunings by Eigenmonzos[edit]

Gencom: [2 7/6; 66/65 99/98 105/104 121/120]

Gencom map: [<1 0 3 1 3 1|, <0 7 -3 8 2 12|]

Eigenmonzo Subminor Third
7/6 266.871
13/12 267.715
14/13 267.925
15/11 268.475
13/11 268.921
15/13 269.032
14/11 269.585
16/13 270.044
12/11 270.127
15/14 270.139
13/10 270.281
|0 112 -67 20 -28 52> 270.860 (15 limit least squares)
|0 118 -61 16 -26 44> 270.933 (13 limit least squares)
7\31 270.968
11/9 271.049 (13 and 15 limit minimax)
8/7 271.103
7/5 271.137
5/4 271.229
1361367/1000000 271.326 (7 limit least squares)
19\84 271.429
|0 119 -46 20 -16> 271.445 (11 limit least squares)
x^10 + 2x^3 = 8 271.508 (equal beating)
|0 90 -41 14> 271.561 (9 limit least squares)
6/5 271.564 (5 limit minimax)
1220703125/1033121304 271.590 (5 limit least squares)
10/9 271.623 (9 limit minimax)
12\53 271.698
4/3 271.708
16/15 272.067
9/7 272.514
5\22 272.727
11/10 273.001
11/8 275.659
18/13 281.691

Spectrum of Blair Tunings by Eigenmonzos[edit]

Gencom: [2 7/6; 65/64 78/77 91/90 99/98]

Gencom map: [<1 0 3 1 3 3|, <0 7 -3 8 2 3|]

Eigenmonzo Subminor Third
15/13 247.741
13/12 265.357
14/13 265.660
7/6 266.871
15/11 268.475
18/13 269.398
14/11 269.585
12/11 270.127
15/14 270.139
7\31 270.968
11/9 271.049
8/7 271.103
7/5 271.137 (7, 11, 13 and 15 limit minimax)
5/4 271.229
|0 148 -49 29 -19 -11> 271.231 (15 limit least squares)
|0 145 -52 25 -17 -10> 271.261 (13 limit least squares)
1361367/1000000 271.326 (7 limit least squares)
19\84 271.429
|0 119 -46 20 -16> 271.445 (11 limit least squares)
x^10 + 2x^3 = 8 271.508 (equal beating)
|0 90 -41 14> 271.561 (9 limit least squares)
6/5 271.564 (5 limit minimax)
1220703125/1033121304 271.590 (5 limit least squares)
10/9 271.623 (9 limit minimax)
12\53 271.698
4/3 271.708
16/15 272.067
9/7 272.514
5\22 272.727
11/10 273.001
11/8 275.659
13/10 275.702
16/13 280.176
13/11 289.210