List of 31et rank two temperaments by badness
Jump to navigation
Jump to search
Below are listed rank-two temperaments supported by the 31edo patent val, below the indicated cutoff in TE badness.
5-limit temperaments with badness below 0.1[edit]
Listed is the wedgie and the TE badness times 1000 for four temperaments with badness less than 0.1.
1 | <<1 4 4]] | Meantone | 7.381 | 81/80 |
2 | <<15 -2 -38]] | Luna | 20.576 | 274877906944/274658203125 |
3 | <<8 1 -17]] | Würschmidt | 40.603 | 393216/390625 |
4 | <<7 -3 -21]] | Orson | 40.807 | 2109375/2097152 |
7-limit temperaments with badness below 0.06[edit]
Listed is the wedgie and the TE badness times 1000 for 19 temperaments with badness less than 0.06.
Rank | Wedgie | Name | Badness | Commas |
1 | <<22 -5 3 -59 -57 21]] | Tertiaseptal | 12.995 | 2401/2400 65625/65536 |
2 | <<1 4 10 4 13 12]] | Meantone | 13.707 | 81/80 126/125 |
3 | <<6 -7 -2 -25 -20 15]] | Miracle | 16.742 | 225/224 1029/1024 |
4 | <<16 2 5 -34 -37 6]] | Hemiwürschmidt | 20.307 | 2401/2400 3136/3125 |
5 | <<7 -3 8 -21 -7 27]] | Orwell | 20.735 | 225/224 1728/1715 |
6 | <<10 9 7 -9 -17 -9]] | Myna | 27.044 | 126/125 1728/1715 |
7 | <<9 5 -3 -13 -30 -21]] | Valentine | 31.056 | 126/125 1029/1024 |
8 | <<38 -3 8 -93 -94 27]] | Quasiorwell | 35.832 | 2401/2400 29360128/29296875 |
9 | <<3 12 -1 12 -10 -36]] | Mothra/Cynder | 37.146 | 81/80 1029/1024 |
10 | <<15 -2 -5 -38 -50 -6]] | Hemithirds | 44.284 | 1029/1024 3136/3125 |
11 | <<60 -8 11 -152 -151 48]] | Subneutral | 45.792 | 2401/2400 274877906944/274658203125 |
12 | <<4 16 9 16 3 -24]] | Squares | 45.993 | 81/80 2401/2400 |
13 | <<5 -11 -12 -29 -33 3]] | Tritonic | 47.578 | 225/224 50421/50000 |
14 | <<11 13 17 -5 -4 3]] | Nusecond | 50.389 | 126/125 2430/2401 |
15 | <<17 6 15 -30 -24 18]] | Semisept | 50.472 | 1728/1715 3136/3125 |
16 | <<8 1 18 -17 6 39]] | Würschmidt | 50.776 | 225/224 8748/8575 |
17 | <<23 -1 13 -55 -44 33]] | Grendel | 51.834 | 6144/6125 16875/16807 |
18 | <<2 8 -11 8 -23 -48]] | Mohajira | 55.714 | 81/80 6144/6125 |
19 | <<13 -10 6 -46 -27 42]] | Slender | 56.934 | 225/224 589824/588245 |
11-limit temperaments with badness below 0.05[edit]
Listed is the wedgie and the TE badness times 1000 for 68 temperaments with badness less than 0.05.
Rank | Wedgie | Name | Badness | Commas |
1 | <<6 -7 -2 15 -25 -20 3 15 59 49]] | Miracle | 10.684 | 225/224 243/242 441/440 |
2 | <<7 -3 8 2 -21 -7 -21 27 15 -22]] | Orwell | 15.231 | 99/98 121/120 176/175 |
3 | <<44 -10 6 79 -118 -114 -27 42 218 201]] | Hemitert | 15.633 | 2401/2400 3025/3024 65625/65536 |
4 | <<9 5 -3 7 -13 -30 -20 -21 -1 30]] | Valentine | 16.687 | 121/120 126/125 176/175 |
5 | <<10 9 7 25 -9 -17 5 -9 27 46]] | Myna | 16.842 | 126/125 176/175 243/242 |
6 | <<1 4 10 18 4 13 25 12 28 16]] | Meantone | 17.027 | 81/80 99/98 126/125 |
7 | <<38 -3 8 64 -93 -94 -30 27 159 152]] | Quasiorwell | 17.540 | 2401/2400 3025/3024 5632/5625 |
8 | <<15 -2 -5 22 -38 -50 -17 -6 58 79]] | Hemithirds | 19.003 | 385/384 441/440 3136/3125 |
9 | <<23 -1 13 42 -55 -44 -13 33 101 73]] | Grendel | 19.845 | 540/539 1375/1372 5632/5625 |
10 | <<16 2 5 40 -34 -37 8 6 86 95]] | Hemiwürschmidt | 21.069 | 243/242 441/440 3136/3125 |
11 | <<1 4 10 -13 4 13 -24 12 -44 -71]] | Meanpop | 21.543 | 81/80 126/125 540/539 |
12 | <<4 16 9 10 16 3 2 -24 -32 -3]] | Squares | 21.636 | 81/80 99/98 121/120 |
13 | <<17 6 15 27 -30 -24 -16 18 42 24]] | Semisept | 22.476 | 176/175 540/539 1331/1323 |
14 | <<5 -11 -12 -3 -29 -33 -22 3 31 33]] | Tritonic | 23.659 | 121/120 225/224 441/440 |
15 | <<8 1 18 20 -17 6 4 39 43 -6]] | Würschmidt | 24.413 | 99/98 176/175 243/242 |
16 | <<13 -10 6 17 -46 -27 -18 42 74 27]] | Slender | 25.342 | 225/224 385/384 1331/1323 |
17 | <<2 8 20 5 8 26 1 24 -16 -55]] | Migration | 25.516 | 81/80 121/120 126/125 |
18 | <<11 13 17 12 -5 -4 -19 3 -17 -25]] | Nusecond | 25.621 | 99/98 121/120 126/125 |
19 | <<3 12 -1 -8 12 -10 -23 -36 -60 -19]] | Mothra | 25.642 | 81/80 99/98 385/384 |
20 | <<2 8 -11 5 8 -23 1 -48 -16 52]] | Mohajira | 26.064 | 81/80 121/120 176/175 |
21 | <<29 -8 11 57 -80 -64 -10 48 160 122]] | Eris | 27.621 | 540/539 1375/1372 65625/65536 |
22 | <<16 2 5 9 -34 -37 -41 6 14 8]] | Hemiwur | 29.270 | 121/120 176/175 1375/1372 |
23 | <<21 -9 -7 37 -63 -70 -14 9 117 128]] | Triwell | 29.807 | 385/384 441/440 456533/455625 |
24 | <<22 -5 3 24 -59 -57 -38 21 73 57]] | Tertia | 30.171 | 385/384 1331/1323 1375/1372 |
25 | <<82 -13 14 143 -211 -208 -57 69 377 353]] | 30.609 | 2401/2400 3025/3024 369140625/369098752 | |
26 | <<3 12 -1 23 12 -10 26 -36 12 68]] | 31.334 | 81/80 540/539 1029/1024 | |
27 | <<7 -3 8 33 -21 -7 28 27 87 65]] | 31.438 | 225/224 441/440 1728/1715 | |
28 | <<67 -11 19 121 -173 -158 -40 75 319 274]] | 32.121 | 3025/3024 180224/180075 703125/702464 | |
29 | <<6 -7 -2 -16 -25 -20 -46 15 -13 -38]] | 32.946 | 99/98 176/175 1029/1024 | |
30 | <<10 9 7 -6 -9 -17 -44 -9 -45 -41]] | 33.434 | 99/98 126/125 385/384 | |
31 | <<8 1 -13 20 -17 -43 4 -33 43 101]] | 33.436 | 126/125 243/242 385/384 | |
32 | <<32 4 10 49 -68 -74 -33 12 100 103]] | 34.814 | 2401/2400 3025/3024 3136/3125 | |
33 | <<22 -5 3 55 -59 -57 11 21 145 144]] | 35.576 | 243/242 441/440 703125/702464 | |
34 | <<28 -12 1 39 -84 -77 -35 36 132 106]] | 36.493 | 385/384 1375/1372 14641/14580 | |
35 | <<14 -6 16 35 -42 -14 7 54 102 43]] | 38.377 | 225/224 243/242 2420/2401 | |
36 | <<25 7 2 47 -47 -67 -12 -15 85 125]] | 39.162 | 441/440 3388/3375 6144/6125 | |
37 | <<4 -15 9 10 -33 3 2 63 75 -3]] | 39.595 | 99/98 243/242 385/384 | |
38 | <<31 0 0 62 -72 -87 -9 0 144 174]] | 39.9210 | 441/440 3136/3125 41503/41472 | |
39 | <<3 -19 -1 -8 -37 -10 -23 51 47 -19]] | 40.217 | 99/98 121/120 1029/1024 | |
40 | <<19 14 4 32 -22 -47 -15 -30 26 76]] | 40.539 | 126/125 176/175 14641/14580 | |
41 | <<54 -1 13 104 -127 -131 -22 33 245 247]] | 41.496 | 2401/2400 5632/5625 46656/46585 | |
42 | <<8 1 -13 -11 -17 -43 -45 -33 -29 14]] | 41.680 | 126/125 176/175 14641/14406 | |
43 | <<9 5 -3 38 -13 -30 29 -21 71 117]] | 42.204 | 126/125 540/539 1029/1024 | |
44 | <<12 -14 -4 -1 -50 -40 -43 30 46 11]] | 42.687 | 121/120 225/224 1029/1024 | |
45 | <<12 17 27 30 -1 9 6 15 11 -9]] | 42.719 | 99/98 126/125 243/242 | |
46 | <<5 20 19 28 20 16 27 -12 -4 13]] | 42.869 | 81/80 99/98 2541/2500 | |
47 | <<0 0 0 31 0 0 49 0 72 87]] | 42.959 | 81/80 126/125 1029/1024 | |
48 | <<11 -18 -14 12 -54 -53 -19 18 90 82]] | 44.005 | 225/224 441/440 9317/9216 | |
49 | <<11 13 17 43 -5 -4 30 3 55 62]] | 44.041 | 126/125 176/175 2430/2401 | |
50 | <<13 21 6 17 3 -27 -18 -45 -33 27]] | 44.186 | 121/120 441/440 891/875 | |
51 | <<26 11 12 34 -43 -54 -36 -3 41 54]] | 44.660 | 176/175 1331/1323 2401/2400 | |
52 | <<61 -4 21 106 -148 -138 -43 60 260 225]] | 44.729 | 3025/3024 5632/5625 825000/823543 | |
53 | <<60 -8 11 119 -152 -151 -19 48 304 296]] | 44.888 | 2401/2400 46656/46585 172032/171875 | |
54 | <<19 -17 4 32 -71 -47 -15 57 133 76]] | 45.168 | 225/224 385/384 585640/583443 | |
55 | <<5 -11 -12 28 -29 -33 27 3 103 120]] | 45.456 | 225/224 385/384 27783/27500 | |
56 | <<5 20 19 -3 20 16 -22 -12 -76 -74]] | 45.466 | 81/80 540/539 1375/1372 | |
57 | <<1 4 -21 -13 4 -36 -24 -60 -44 36]] | 45.509 | 81/80 176/175 1331/1323 | |
58 | <<18 10 25 45 -26 -11 9 30 70 40]] | 45.7950 | 176/175 243/242 1375/1372 | |
59 | <<39 1 18 82 -89 -81 -5 39 187 168]] | 45.928 | 540/539 5632/5625 151263/151250 | |
60 | <<2 -23 -11 5 -41 -23 1 39 91 52]] | 46.181 | 243/242 441/440 1815/1792 | |
61 | <<4 -15 -22 10 -33 -46 2 -9 75 104]] | 46.462 | 225/224 243/242 1617/1600 | |
62 | <<9 5 28 7 -13 19 -20 51 -1 -77]] | 47.885 | 121/120 225/224 891/875 | |
63 | <<33 8 20 67 -64 -61 -8 24 128 119]] | 48.088 | 540/539 3136/3125 15488/15435 | |
64 | <<14 -6 -15 4 -42 -63 -42 -18 30 63]] | 48.150 | 121/120 441/440 3136/3125 | |
65 | <<8 1 18 -11 -17 6 -45 39 -29 -93]] | 48.186 | 225/224 385/384 891/875 | |
66 | <<50 -17 4 94 -143 -134 -24 57 277 250]] | 48.798 | 2401/2400 3025/3024 1265625/1261568 | |
67 | <<7 -3 -23 2 -21 -56 -21 -45 15 85]] | 49.572 | 121/120 126/125 2079/2048 | |
68 | <<20 18 14 19 -18 -34 -39 -18 -18 5]] | 49.917 | 121/120 126/125 1728/1715 |
13-limit temperaments with badness below 0.04[edit]
Listed is the wedgie and the TE badness times 1000 for 64 temperaments with badness less than 0.04.
Rank | Wedgie | Name | Badness | Commas |
1 | <<6 -7 -2 15 -34 -25 -20 3 -76 15 59 -53 49 -88 -173]] | Benediction | 15.715 | 225/224 243/242 351/350 441/440 |
2 | <<10 9 7 25 -5 -9 -17 5 -45 -9 27 -45 46 -40 -110]] | Myna | 17.125 | 126/125 144/143 176/175 196/195 |
3 | <<1 4 10 18 15 4 13 25 20 12 28 20 16 5 -15]] | Meantone | 18.048 | 66/65 81/80 99/98 105/104 |
4 | <<6 -7 -2 15 -3 -25 -20 3 -27 15 59 19 49 -1 -66]] | Miraculous | 18.669 | 105/104 144/143 196/195 275/273 |
5 | <<7 -3 8 2 -19 -21 -7 -21 -56 27 15 -33 -22 -83 -73]] | Orwell | 19.718 | 99/98 121/120 176/175 275/273 |
6 | <<7 -3 8 2 12 -21 -7 -21 -7 27 15 39 -22 4 34]] | Winston | 19.931 | 66/65 99/98 105/104 121/120 |
7 | <<9 5 -3 7 -20 -13 -30 -20 -65 -21 -1 -65 30 -45 -95]] | Valentino | 20.665 | 121/120 126/125 176/175 196/195 |
8 | <<1 4 10 -13 15 4 13 -24 20 12 -44 20 -71 5 100]] | Meanpop | 20.883 | 81/80 105/104 144/143 196/195 |
9 | <<9 5 -3 7 11 -13 -30 -20 -16 -21 -1 7 30 42 12]] | Lupercalia | 21.328 | 66/65 105/104 121/120 126/125 |
10 | <<15 -2 -5 22 -23 -38 -50 -17 -92 -6 58 -46 79 -46 -161]] | Hemithirds | 21.738 | 196/195 352/351 1001/1000 1029/1024 |
11 | <<5 -11 -12 -3 -18 -29 -33 -22 -47 3 31 -1 33 -6 -51]] | Tritonic | 22.993 | 105/104 121/120 196/195 275/273 |
12 | <<16 2 5 40 -39 -34 -37 8 -121 6 86 -98 95 -128 -283]] | Hemiwürschmidt | 23.074 | 243/242 351/350 441/440 3584/3575 |
13 | <<11 13 17 12 10 -5 -4 -19 -25 3 -17 -25 -25 -35 -10]] | Nusecond | 23.323 | 66/65 99/98 121/120 126/125 |
14 | <<2 8 -11 5 -1 8 -23 1 -9 -48 -16 -32 52 38 -22]] | Mohajira | 23.388 | 66/65 105/104 121/120 512/507 |
15 | <<8 1 18 20 -4 -17 6 4 -36 39 43 -13 -6 -78 -88]] | Würschmidt | 23.593 | 99/98 144/143 176/175 275/273 |
16 | <<3 12 -1 -8 14 12 -10 -23 11 -36 -60 -12 -19 43 78]] | Mothra | 23.954 | 81/80 99/98 105/104 144/143 |
17 | <<4 16 9 10 29 16 3 2 31 -24 -32 8 -3 48 63]] | Agora | 24.522 | 81/80 99/98 105/104 121/120 |
18 | <<23 -1 13 42 -27 -55 -44 -13 -128 33 101 -59 73 -124 -249]] | Grendel | 24.839 | 352/351 540/539 625/624 1375/1372 |
19 | <<17 6 15 27 -24 -30 -24 -16 -101 18 42 -78 24 -123 -183]] | 25.204 | 176/175 351/350 540/539 1375/1372 | |
20 | <<0 0 0 0 31 0 0 0 49 0 0 72 0 87 107]] | Gallium | 25.484 | 81/80 99/98 121/120 126/125 |
21 | <<4 16 9 10 -2 16 3 2 -18 -24 -32 -64 -3 -39 -44]] | Squares | 25.514 | 66/65 81/80 99/98 121/120 |
22 | <<1 4 10 18 -16 4 13 25 -29 12 28 -52 16 -82 -122]] | Grosstone | 25.899 | 81/80 99/98 126/125 144/143 |
23 | <<13 -10 6 17 -22 -46 -27 -18 -83 42 74 -14 27 -84 -139]] | Slender | 25.913 | 225/224 275/273 385/384 1331/1323 |
24 | <<21 -9 -7 37 -57 -63 -70 -14 -168 9 117 -99 128 -134 -334]] | 27.405 | 385/384 441/440 625/624 13720/13689 | |
25 | <<2 8 20 5 30 8 26 1 40 24 -16 40 -55 10 85]] | 27.835 | 81/80 105/104 121/120 196/195 | |
26 | <<2 8 20 5 -1 8 26 1 -9 24 -16 -32 -55 -77 -22]] | Migration | 28.071 | 66/65 121/120 126/125 1215/1183 |
27 | <<22 -5 3 24 -42 -59 -57 -38 -148 21 73 -79 57 -129 -234]] | 28.384 | 352/351 385/384 625/624 1331/1323 | |
28 | <<17 6 15 27 7 -30 -24 -16 -52 18 42 -6 24 -36 -76]] | 28.408 | 144/143 176/175 196/195 275/273 | |
29 | <<16 2 5 9 -8 -34 -37 -41 -72 6 14 -26 8 -41 -61]] | 28.432 | 121/120 176/175 196/195 275/273 | |
30 | <<3 12 -1 23 14 12 -10 26 11 -36 12 -12 68 43 -37]] | 29.207 | 66/65 81/80 105/104 1001/1000 | |
31 | <<6 -7 -2 -16 -3 -25 -20 -46 -27 15 -13 19 -38 -1 49]] | 29.452 | 66/65 99/98 105/104 1001/1000 | |
32 | <<10 9 7 25 26 -9 -17 5 4 -9 27 27 46 47 -3]] | 29.868 | 66/65 105/104 126/125 540/539 | |
33 | <<7 -3 8 33 -19 -21 -7 28 -56 27 87 -33 65 -83 -188]] | 30.237 | 144/143 225/224 351/350 441/440 | |
34 | <<16 2 5 40 -8 -34 -37 8 -72 6 86 -26 95 -41 -176]] | Hemithir | 31.199 | 144/143 196/195 243/242 625/624 |
35 | <<32 4 10 49 -47 -68 -74 -33 -193 12 100 -124 103 -169 -344]] | 31.732 | 352/351 1001/1000 1716/1715 3025/3024 | |
36 | <<10 9 7 -6 -5 -9 -17 -44 -45 -9 -45 -45 -41 -40 5]] | 31.850 | 66/65 99/98 126/125 385/384 | |
37 | <<15 -2 -5 22 -54 -38 -50 -17 -141 -6 58 -118 79 -133 -268]] | 31.990 | 351/350 385/384 441/440 3146/3125 | |
38 | <<23 -1 13 42 -58 -55 -44 -13 -177 33 101 -131 73 -211 -356]] | 32.359 | 351/350 540/539 1375/1372 5632/5625 | |
39 | <<1 4 10 -13 -16 4 13 -24 -29 12 -44 -52 -71 -82 -7]] | 33.007 | 66/65 81/80 126/125 385/384 | |
40 | <<12 -14 -4 30 -37 -50 -40 6 -103 30 118 -34 98 -89 -239]] | 33.451 | 225/224 243/242 441/440 1875/1859 | |
41 | <<8 1 18 20 27 -17 6 4 13 39 43 59 -6 9 19]] | 34.382 | 66/65 99/98 105/104 243/242 | |
42 | <<8 1 -13 20 -4 -17 -43 4 -36 -33 43 -13 101 37 -88]] | 34.458 | 105/104 126/125 144/143 243/242 | |
43 | <<3 -19 -1 -8 -17 -37 -10 -23 -38 51 47 31 -19 -44 -29]] | 35.530 | 99/98 105/104 121/120 640/637 | |
44 | <<8 1 -13 20 -35 -17 -43 4 -85 -33 43 -85 101 -50 -195]] | 35.585 | 126/125 196/195 385/384 1575/1573 | |
45 | <<3 12 -1 -8 -17 12 -10 -23 -38 -36 -60 -84 -19 -44 -29]] | 36.239 | 66/65 81/80 99/98 385/384 | |
46 | <<8 1 -13 -11 -4 -17 -43 -45 -36 -33 -29 -13 14 37 27]] | 36.331 | 66/65 105/104 126/125 512/507 | |
47 | <<5 -11 -12 -3 -49 -29 -33 -22 -96 3 31 -73 33 -93 -158]] | 36.533 | 121/120 225/224 351/350 441/440 | |
48 | <<10 9 7 -6 26 -9 -17 -44 4 -9 -45 27 -41 47 112]] | 36.656 | 99/98 105/104 126/125 144/143 | |
49 | <<3 12 -1 23 -17 12 -10 26 -38 -36 12 -84 68 -44 -144]] | 36.857 | 81/80 144/143 176/175 1029/1024 | |
50 | <<22 -5 3 55 -42 -59 -57 11 -148 21 145 -79 144 -129 -349]] | 36.876 | 243/242 441/440 625/624 3584/3575 | |
51 | <<5 20 19 28 13 20 16 27 2 -12 -4 -44 13 -34 -59]] | 37.382 | 66/65 81/80 99/98 1001/1000 | |
52 | <<4 -15 9 10 -2 -33 3 2 -18 63 75 51 -3 -39 -44]] | 37.408 | 99/98 105/104 144/143 243/242 | |
53 | <<13 -10 6 17 -53 -46 -27 -18 -132 42 74 -86 27 -171 -246]] | 37.732 | 225/224 351/350 385/384 1331/1323 | |
54 | <<12 17 27 30 25 -1 9 6 -5 15 11 -5 -9 -30 -25]] | 37.849 | 66/65 99/98 126/125 243/242 | |
55 | <<0 0 0 31 0 0 0 49 0 0 72 0 87 0 -115]] | 37.885 | 81/80 105/104 196/195 512/507 | |
56 | <<13 21 6 17 9 3 -27 -18 -34 -45 -33 -57 27 3 -32]] | 38.116 | 66/65 121/120 343/338 441/440 | |
57 | <<10 9 7 25 -36 -9 -17 5 -94 -9 27 -117 46 -127 -217]] | 38.811 | 126/125 176/175 243/242 1573/1568 | |
58 | <<7 -3 8 33 12 -21 -7 28 -7 27 87 39 65 4 -81]] | 38.812 | 105/104 196/195 275/273 648/637 | |
59 | <<9 5 -3 38 -20 -13 -30 29 -65 -21 71 -65 117 -45 -210]] | 39.221 | 126/125 144/143 196/195 1029/1024 | |
60 | <<25 7 2 47 -28 -47 -67 -12 -137 -15 85 -91 125 -86 -271]] | 39.271 | 196/195 352/351 1001/1000 6144/6125 | |
61 | <<14 -6 16 35 -38 -42 -14 7 -112 54 102 -66 43 -166 -261]] | 39.531 | 225/224 243/242 351/350 2420/2401 | |
62 | <<11 13 17 12 41 -5 -4 -19 24 3 -17 47 -25 52 97]] | 39.576 | 99/98 105/104 121/120 126/125 | |
63 | <<11 13 17 43 10 -5 -4 30 -25 3 55 -25 62 -35 -125]] | 39.707 | 126/125 176/175 196/195 648/637 | |
64 | <<16 2 5 9 -39 -34 -37 -41 -121 6 14 -98 8 -128 -168]] | 39.907 | 121/120 176/175 351/350 1375/1372 |