Canopus
Canopus is the rank two 3.5.7 temperament tempering out 16875/16807. Having a generator of ~7:5, it possesses non-trivial MOS of the families 1L 2s (triad), 3L 1s (tetrad), 3L 4s ("neutral" diatonic) and 3L 7s (augmented neutral decatonic). On either side the greater region where it appears, there appear the most important, though as yet unnamed, tritave-equivalent temperaments which retain twos, they being important for using a (smeary) ~4:3 or 3:2 as a generator.
The Sigma and Anti-Sigma (Mu) MOS families of 8L+3s and 3L+8s (unfair) or 4L+7s and 7L+4s (fair), but especially the unfair families which by definition include an interval for the function of an "ordinary" ~2:1, are good scales to know for the conceptualizations they provide of how an "ordinary" diatonic or anti-diatonic scale extends into a tritave equivalence. These scales are neighbors of the 7&3 region where the 3L+7s Canopus decatonic scale appears. Below is a list of equal temperaments which contain these scales using generators between or 475.5 and 713.2 cents:
L=1 s=0 8 edt | L=1 s=0 7 edt | L=1 s=0 3 edt |
L=7 s=1 59 | L=7 s=1 53 | L=7 s=1 28 |
L=6 s=1 51 | L=6 s=1 46 | L=6 s=1 25 |
L=5 s=1 43 | L=5 s=1 39 | L=5 s=1 22 |
L=4 s=1 35 | L=4 s=1 32 | L=4 s=1 19 |
L=7 s=2 62 | L=7 s=2 57 | L=7 s=2 35 |
L=3 s=1 27 | L=3 s=1 25 | L=3 s=1 16 |
L=5 s=2 46 | L=5 s=2 43 | L=5 s=2 29 |
L=7 s=3 65 | L=7 s=3 61 | L=7 s=3 42 |
L=2 s=1 19 | L=2 s=1 18 | L=2 s=1 13 |
L=7 s=4 68 | L=7 s=4 65 | L=7 s=4 49 |
L=5 s=3 49 | L=5 s=3 47 | L=5 s=3 36 |
L=3 s=2 30 | L=3 s=2 29 | L=3 s=2 23 |
L=7 s=5 71 | L=7 s=5 69 | L=7 s=5 56 |
L=4 s=3 41 | L=4 s=3 40 | L=4 s=3 33 |
L=5 s=4 52 | L=5 s=4 51 | L=5 s=4 43 |
L=6 s=5 63 | L=6 s=5 62 | L=6 s=5 53 |
L=7 s=6 74 | L=7 s=6 73 | L=7 s=6 63 |
L=1 s=1 11 edt | L=1 s=1 10 edt | |
L=7 s=6 69 | L=7 s=6 70 | L=7 s=6 67 |
L=6 s=5 58 | L=6 s=5 59 | L=6 s=5 57 |
L=5 s=4 47 | L=5 s=4 48 | L=5 s=4 47 |
L=4 s=3 36 | L=4 s=3 37 | L=4 s=3 37 |
L=7 s=5 61 | L=7 s=5 63 | L=7 s=5 64 |
L=3 s=2 25 | L=3 s=2 26 | L=3 s=2 27 |
L=5 s=3 39 | L=5 s=3 41 | L=5 s=3 44 |
L=7 s=4 53 | L=7 s=4 56 | L=7 s=4 61 |
L=2 s=1 14 | L=2 s=1 15 | L=2 s=1 17 |
L=7 s=3 45 | L=7 s=3 49 | L=7 s=3 58 |
L=5 s=2 31 | L=5 s=2 30 | L=5 s=2 41 |
L=3 s=1 17 | L=3 s=1 19 | L=3 s=1 24 |
L=7 s=2 37 | L=7 s=2 42 | L=7 s=2 55 |
L=4 s=1 20 | L=4 s=1 23 | L=4 s=1 31 |
L=5 s=1 23 | L=5 s=1 27 | L=5 s=1 38 |
L=6 s=1 26 | L=6 s=1 31 | L=6 s=1 45 |
L=7 s=1 29 | L=7 s=1 35 | L=7 s=1 52 |
L=1 s=0 3 edt | L=1 s=0 4 edt | L=1 s=0 7 edt |
As the table shows, the two families overlap at several equal temperaments within the first sixteen proper members of each tree due to the fact that the chain of ~4:3s forms an index-2 subtemperament of a chain of ~3:2s under tritave equivalence. Beyond that, the unfair Sigma and Mu scales match the EDO-EDT correspondences due to their definition including an interval with the function of an "ordinary" ~2:1 which can nevertheless be off by up to +68.0 cents and the fair scales compare to 5a+2b edos in a completely backwards way, with 7L+4s actually comparing to the anti-diatonic scale but being contained in the larger edts. This backward way that the fair scales compare to edos creates an interesting coincidence between 27edt and 27edo both as generated by an ~4:3.
Generator | cents | L | s | notes | ||||||
---|---|---|---|---|---|---|---|---|---|---|
3\8 | 713.23 | 237.74 | 0 | |||||||
22\59 | 709.20 | 225.66 | 32.24 | |||||||
19\51 | 708.57 | 223.76 | 37.29 | |||||||
35\94 | 708.175 | 222.57 | 40.47 | |||||||
16\43 | 707.74 | 221.16 | 44.23 | |||||||
45\121 | 707.34 | 220.06 | 47.16 | |||||||
29\78 | 707.14 | 219.46 | 48.77 | |||||||
42\113 | 706.92 | 218.81 | 50.49 | |||||||
13\35 | 706.44 | 217.37 | 54.34 | |||||||
49\132 | 706.03 | 216.13 | 57.635 | |||||||
36\97 | 705.88 | 215.69 | 58.82 | |||||||
59\159 | 705.76 | 216.32 | 59.81 | |||||||
23\62 | 705.56 | 214.74 | 61.35 | |||||||
56\151 | 705.36 | 214.13 | 62.98 | |||||||
33\89 | 705.22 | 213.70 | 64.11 | |||||||
43\116 | 705.035 | 213.15 | 65.585 | |||||||
10\27 | 704.43 | 211.33 | 70.44 | |||||||
47\127 | 703.87 | 209.66 | 74.88 | |||||||
37\100 | 703.72 | 209.215 | 76.08 | |||||||
64\173 | 703.61 | 208.885 | 76,96 | |||||||
27\73 | 703.46 | 208.43 | 78.16 | |||||||
71\192 | 703.33 | 208.03 | 79.25 | |||||||
44\119 | 703.24 | 207.78 | 79.91 | |||||||
61\165 | 703.15 | 207.49 | 80.69 | |||||||
17\46 | 702.90 | 206.73 | 82.69 | |||||||
58\157 | 702.63 | 205.94 | 84.80 | |||||||
41\111 | 702.52 | 205.62 | 85.67 | |||||||
65\176 | 702.43 | 205.325 | 86.45 | |||||||
24\65 | 702.26 | 204.83 | 87.78 | |||||||
55\149 | 702.06 | 204.24 | 89.35 | |||||||
31\84 | 701.91 | 203.78 | 90.57 | |||||||
38\103 | 701.69 | 203.12 | 92.34 | |||||||
7\19 | 700.72 | 200.21 | 100.10 | Boundary of propriety for unfair Sigma scale | ||||||
39\106 | 699.78 | 197.37 | 107.66 | |||||||
32\87 | 699.57 | 196.75 | 109.31 | |||||||
57\155 | 699.43 | 196.33 | 110.44 | |||||||
25\68 | 699.25 | 195.71 | 111.88 | |||||||
68\185 | 699.10 | 195.34 | 113.09 | |||||||
43\117 | 699.01 | 195.07 | 113.79 | |||||||
61\166 | 698.91 | 194.78 | 114.58 | |||||||
18\49 | 698.68 | 194.08 | 116.45 | |||||||
65\177 | 698.46 | 193.42 | 118.20 | |||||||
47\128 | 698.37 | 193.17 | 118.87 | |||||||
76\207 | 698.30 | 192.95 | 119.45 | Golden unfair Sigma scale is near here | ||||||
29\79 | 698.19 | 192.60 | 120.38 | |||||||
69\188 | 698.05 | 192.22 | 121.40 | |||||||
40\109 | 697.965 | 191.94 | 122.14 | |||||||
51\139 | 697.84 | 191.56 | 123.15 | |||||||
11\30 | 697.38 | 190.20 | 126.80 | |||||||
48\131 | 696.90 | 188.74 | 130.67 | |||||||
37\101 | 696.76 | 188.31 | 131.82 | |||||||
63\172 | 696.65 | 187.98 | 132.695 | |||||||
26\71 | 696.49 | 187.52 | 133.94 | |||||||
67\183 | 696.34 | 187.08 | 135.11 | |||||||
41\112 | 696.25 | 186.80 | 135.85 | |||||||
56\153 | 696.14 | 186.47 | 136.74 | |||||||
15\41 | 695.84 | 185.56 | 139.17 | |||||||
49\134 | 695.49 | 184.52 | 141.94 | |||||||
34\93 | 695.34 | 184.06 | 143.16 | |||||||
53\145 | 695.20 | 183.64 | 144.29 | |||||||
19\52 | 694.945 | 182.88 | 146.30 | |||||||
42\115 | 694.63 | 181.93 | 148.85 | |||||||
23\63 | 694.365 | 181.14 | 150.95 | |||||||
27\74 | 693.96 | 179.915 | 154.21 | |||||||
4\11 | 691.62 | 172.905 | Separatrix of unfair Sigma and Mu scales | |||||||
25\69 | 689.11 | 192.95 | 165.39 | |||||||
21\58 | 688.64 | 196.75 | 163.96 | |||||||
38\105 | 688.33 | 199.25 | 163.025 | |||||||
17\47 | 687.94 | 202.34 | 161.87 | |||||||
47\130 | 687.63 | 204.83 | 160.935 | |||||||
30\83 | 687.45 | 206.24 | 160.41 | |||||||
43\119 | 687.26 | 207.78 | 159.83 | |||||||
13\36 | 686.82 | 211.33 | 158.50 | |||||||
48\133 | 686.42 | 214.51 | 157.305 | |||||||
35\97 | 686.27 | 215.69 | 156.86 | |||||||
57\158 | 686.15 | 216.68 | 156.49 | |||||||
22\61 | 685.95 | 218.26 | 155.90 | |||||||
53\147 | 685.74 | 219.95 | 155.26 | |||||||
31\86 | 685.59 | 221.16 | 154.81 | |||||||
40\111 | 685.39 | 222.75 | 154.21 | |||||||
9\25 | 684.70 | 228.235 | 152.16 | |||||||
41\114 | 684.04 | 233.57 | 150.15 | |||||||
32\89 | 683.85 | 235.07 | 149.59 | |||||||
55\153 | 683.71 | 236.19 | 149.17 | |||||||
23\64 | 683.515 | 237.74 | 148.50 | |||||||
60\167 | 683.34 | 239.17 | 148.06 | Golden unfair Mu scale is near here | ||||||
37\103 | 683.23 | 240.05 | 147.725 | |||||||
51\142 | 683.10 | 241.09 | 147.335 | |||||||
14\39 | 682.75 | 243.84 | 146.30 | |||||||
47\131 | 682.38 | 246.815 | 145.19 | |||||||
33\92 | 682.22 | 248.08 | 144.71 | |||||||
52\145 | 682.08 | 249.22 | 144.29 | |||||||
19\53 | 681.83 | 251.20 | 143.54 | |||||||
43\120 | 681.53 | 253.59 | 142.65 | |||||||
24\67 | 681.30 | 255.49 | 141.94 | |||||||
29\81 | 680.95 | 258.29 | 140.89 | |||||||
5\14 | 679.27 | 271.71 | 135.85 | Boundary of propriety for unfair Mu scale | ||||||
26\73 | 677.48 | 286.60 | 130.27 | |||||||
21\59 | 676.97 | 290.13 | 128.95 | |||||||
37\104 | 676.66 | 292.61 | 128.02 | |||||||
16\45 | 676.25 | 295.86 | 126.78 | |||||||
43\121 | 675.90 | 298.65 | 125.75 | |||||||
27\76 | 675.695 | 300.31 | 125.13 | |||||||
38\107 | 675.46 | 302.18 | 124.43 | |||||||
11\31 | 674.89 | 306.77 | 122.71 | |||||||
39\110 | 674.33 | 311.23 | 121.03 | |||||||
28\79 | 674.12 | 312.98 | 120.38 | |||||||
45\127 | 673.92 | 314.50 | 119.81 | |||||||
17\48 | 673.61 | 316.99 | 118.87 | |||||||
40\113 | 673.26 | 319.80 | 117.82 | |||||||
23\65 | 673.00 | 321.89 | 117.04 | |||||||
29\82 | 672.64 | 324.72 | 115.97 | |||||||
6\17 | 671.28 | 335.64 | 111.88 | |||||||
25\71 | 669.70 | 348.245 | 107.15 | |||||||
19\54 | 669.21 | 352.21 | 105.66 | |||||||
32\91 | 668.82 | 355.31 | 104.50 | |||||||
13\37 | 668.25 | 359.83 | 102.81 | |||||||
33\94 | 667.71 | 364.20 | 101.17 | |||||||
20\57 | 667.35 | 367.04 | 100.10 | |||||||
27\77 | 666.92 | 370.51 | 98.80 | |||||||
7\20 | 665.68 | 380.39 | 95.10 | |||||||
22\63 | 664.175 | 392.37 | 90.57 | |||||||
15\43 | 663.47 | 398.08 | 88.46 | |||||||
23\66 | 662.80 | 403.445 | 86.45 | |||||||
8\23 | 661.55 | 413.47 | 82.69 | |||||||
17\49 | 659.86 | 426.97 | 73.63 | |||||||
9\26 | 658.37 | 439.81 | 73.15 | |||||||
10\29 | 655.85 | 459.09 | 65.585 | |||||||
1\3 | 633.985 | 0 | ||||||||
9\28 | 611.34 | 475.49 | 67.92 | |||||||
8\25 | 608.63 | 456.47 | 76.08 | |||||||
15\47 | 607.01 | 445.39 | 80.93 | |||||||
7\22 | 605.18 | 432.26 | 86.45 | |||||||
20\63 | 603.795 | 422.66 | 90.57 | |||||||
13\41 | 603.06 | 417.50 | 92.78 | |||||||
19\60 | 602.29 | 412.09 | 95.10 | |||||||
6\19 | 600.62 | 400.41 | 100.11 | |||||||
23\73 | 599.25 | 390.81 | 104.22 | |||||||
17\54 | 598.76 | 387.425 | 105.66 | |||||||
28\89 | 598.37 | 384.665 | 106.85 | |||||||
11\35 | 597.76 | 380.39 | 108.68 | |||||||
27\86 | 597.125 | 375.97 | 110.58 | |||||||
16\51 | 596.69 | 372.93 | 111.88 | |||||||
21\67 | 596.135 | 369.04 | 113.55 | |||||||
5\16 | 594.36 | 356.62 | 118.87 | |||||||
24\77 | 592.82 | 345.81 | 123.50 | |||||||
19\61 | 592.41 | 342.975 | 124.72 | |||||||
33\106 | 592.12 | 340.92 | 125.60 | |||||||
14\45 | 591.72 | 338.125 | 126.80 | |||||||
37\119 | 591.36 | 335.64 | 127.86 | |||||||
23\74 | 591.15 | 334.13 | 128.51 | |||||||
32\103 | 590.90 | 332.38 | 129.26 | |||||||
9\29 | 590.26 | 327.92 | 131.17 | |||||||
31\100 | 589.61 | 323.33 | 133.14 | |||||||
22\71 | 589.34 | 321.46 | 133.94 | |||||||
35\113 | 589.10 | 319.80 | 134.65 | |||||||
13\42 | 588.70 | 316.99 | 135.85 | |||||||
30\97 | 588.23 | 313.725 | 137.25 | |||||||
17\55 | 587.88 | 311.23 | 138.32 | |||||||
21\68 | 587.37 | 307.67 | 139.85 | |||||||
4\13 | 585.22 | 292.61 | 146.30 | |||||||
23\75 | 583.27 | 278.95 | 152.16 | |||||||
19\62 | 582.86 | 276.09 | 153.38 | |||||||
34\111 | 582.58 | 274.16 | 154.21 | |||||||
15\49 | 582.23 | 271.71 | 155.26 | |||||||
41\134 | 581.94 | 269.68 | 156.13 | |||||||
26\85 | 581.77 | 268.51 | 156.63 | |||||||
37\121 | 581.59 | 267.22 | 157.19 | |||||||
11\36 | 581.15 | 264.16 | 158.50 | |||||||
40\131 | 580.75 | 261.34 | 150.71 | |||||||
29\95 | 580.60 | 260.27 | 160.165 | |||||||
47\154 | 580.47 | 259.36 | 160.555 | |||||||
18\59 | 580.26 | 257.89 | 161.18 | |||||||
43\141 | 580.03 | 259.29 | 161.87 | |||||||
25\82 | 579.86 | 255.14 | 162.36 | |||||||
32\105 | 579.64 | 253.59 | 163.025 | |||||||
7\23 | 578.86 | 248.08 | 165.39 | |||||||
31\102 | 578.045 | 242.41 | 167.82 | |||||||
24\79 | 577.81 | 240.75 | 168.53 | |||||||
41\135 | 577.63 | 239.505 | 169.06 | |||||||
17\56 | 577.38 | 237.74 | 169.82 | |||||||
44\145 | 577.145 | 236.105 | 170.52 | |||||||
27\89 | 577.00 | 235.07 | 170.96 | |||||||
37\122 | 576.82 | 233.85 | 171.49 | |||||||
10\33 | 576.35 | 230.54 | 172.905 | |||||||
33\109 | 575.82 | 226.84 | 174.49 | |||||||
23\76 | 575.59 | 225.23 | 175.18 | |||||||
36\119 | 575.38 | 223.76 | 175.81 | |||||||
13\43 | 575.01 | 221.16 | 176.93 | |||||||
29\96 | 574,55 | 217.93 | 178.31 | |||||||
16\53 | 574.175 | 215.32 | 179.43 | |||||||
19\63 | 573.605 | 211.33 | 181.14 | |||||||
3\10 | 570.59 | 190.20 | ||||||||
20\67 | 567.75 | 198.72 | 170.32 | |||||||
17\57 | 567.25 | 200.21 | 166.84 | |||||||
31\104 | 566.93 | 201.17 | 164.50 | |||||||
14\47 | 566.54 | 202.34 | 161.87 | |||||||
39\131 | 566.23 | 203.26 | 159.71 | |||||||
25\84 | 566.06 | 203.78 | 158.50 | |||||||
36\121 | 565.87 | 204.34 | 157.19 | |||||||
11\37 | 565.45 | 205.62 | 154.21 | |||||||
41\138 | 565.07 | 206.73 | 151.605 | |||||||
30\101 | 564.94 | 207.14 | 150.65 | |||||||
49\165 | 564.82 | 207.49 | 149.85 | |||||||
19\64 | 564.64 | 208.03 | 148.59 | |||||||
46\155 | 564.45 | 208.60 | 147.25 | |||||||
27\91 | 564.32 | 209.00 | 146.30 | |||||||
35\118 | 564.14 | 209.54 | 145.06 | |||||||
8\27 | 563.54 | 211.33 | 140.89 | |||||||
37\125 | 562.98 | 213.02 | 136.94 | |||||||
29\98 | 562.82 | 213.485 | 135.85 | |||||||
50\169 | 562.71 | 213.83 | 135.05 | |||||||
21\71 | 562.55 | 214.30 | 133.94 | |||||||
55\186 | 562.41 | 214.74 | 132.93 | |||||||
34\115 | 562.32 | 215.00 | 132.31 | |||||||
47\159 | 562.21 | 215.32 | 131.58 | |||||||
13\44 | 561.94 | 216.13 | 129.68 | |||||||
44\149 | 561.65 | 217.00 | 127.65 | |||||||
31\105 | 561.53 | 217.37 | 126.80 | |||||||
49\166 | 561.42 | 217.69 | 126.03 | |||||||
18\61 | 561.23 | 218.26 | 124.72 | |||||||
41\139 | 561.01 | 218.93 | 123.15 | |||||||
23\78 | 560.83 | 219.46 | 121.92 | |||||||
28\95 | 560.58 | 220.23 | 120.12 | |||||||
5\17 | 559.40 | 223.76 | 111.88 | |||||||
27\92 | 558.18 | 227.41 | 103.37 | |||||||
22\75 | 557.91 | 228.235 | 101.44 | |||||||
39\133 | 557.72 | 228.81 | 100.10 | |||||||
17\58 | 557.47 | 229.55 | 98.38 | |||||||
46\157 | 557.26 | 230.17 | 96.915 | |||||||
29\99 | 557.14 | 230.54 | 96.06 | |||||||
41\140 | 557.00 | 230.95 | 95.10 | |||||||
12\41 | 556.67 | 231.95 | 92.78 | |||||||
43\147 | 556.35 | 232.89 | 90.57 | |||||||
31\106 | 556.23 | 233.26 | 89.715 | |||||||
50\171 | 556.13 | 233.57 | 88.98 | |||||||
19\65 | 555.96 | 234.09 | 87.78 | |||||||
45\154 | 555.77 | 234.66 | 86.45 | |||||||
26\89 | 555.63 | 235.07 | 85.48 | |||||||
33\113 | 555.44 | 235.64 | 84.16 | |||||||
7\24 | 554.74 | 237.74 | 79.25 | |||||||
30\103 | 553.97 | 240.05 | 73.86 | |||||||
23\79 | 553.73 | 240.75 | 72.23 | |||||||
39\134 | 553.55 | 241.29 | 70.97 | |||||||
16\55 | 553.30 | 242.07 | 69.16 | |||||||
41\141 | 553.05 | 242.80 | 67.445 | |||||||
25\86 | 552.89 | 243.27 | 66.35 | |||||||
34\117 | 552.805 | 243.84 | 65.02 | |||||||
9\31 | 552.18 | 245.41 | 61.35 | |||||||
29\100 | 551.57 | 247.25 | 57.06 | |||||||
20\69 | 551.29 | 248.08 | 55.13 | |||||||
31\107 | 551.03 | 248.85 | 53.33 | |||||||
11\38 | 550.57 | 250.26 | 50.05 | |||||||
24\83 | 549.96 | 252.07 | 45.83 | |||||||
13\45 | 549.45 | 253.59 | 42.27 | |||||||
15\52 | 548.64 | 256.03 | 36.58 | |||||||
2\7 | 543.42 | 271.71 | 0 | |||||||
15\53 | 538.29 | 251.20 | 35.89 | |||||||
13\46 | 537.51 | 248.08 | 41.35 | |||||||
24\85 | 537.02 | 246.135 | 44.75 | |||||||
11\39 | 536.45 | 243.84 | 48.77 | |||||||
31\110 | 536.00 | 242.07 | 51.87 | |||||||
20\71 | 535.76 | 241.09 | 53.58 | |||||||
29\103 | 535.50 | 240.05 | 55.40 | |||||||
9\32 | 534.925 | 237.74 | 59.44 | |||||||
34\121 | 534.43 | 235.78 | 62.875 | |||||||
25\89 | 534.26 | 235.07 | 64.11 | |||||||
41\146 | 534.11 | 234.49 | 65.135 | |||||||
16\57 | 533.88 | 233.57 | 66.735 | |||||||
39\139 | 533.6 | 232.61 | 68.42 | |||||||
23\82 | 533.475 | 231.95 | 69.58 | |||||||
30\107 | 533.26 | 231.09 | 71.10 | |||||||
7\25 | 532.55 | 228.235 | 76.08 | |||||||
33\118 | 531.90 | 225.66 | 80.59 | |||||||
26\93 | 531.73 | 224.96 | 81.805 | |||||||
45\161 | 531.60 | 224.45 | 82,69 | |||||||
19\68 | 531.43 | 223.76 | 83.91 | |||||||
50\179 | 531.27 | 223.13 | 85.00 | |||||||
31\111 | 531.18 | 222.75 | 85.67 | |||||||
43\154 | 531.065 | 222.31 | 86.45 | |||||||
12\43 | 530.78 | 221.16 | 88.46 | |||||||
41\147 | 530.48 | 218.95 | 90.57 | |||||||
29\104 | 530.35 | 219.46 | 91.44 | |||||||
46\165 | 530.24 | 219.01 | 92.22 | |||||||
17\61 | 530.05 | 218.26 | 93.54 | |||||||
39\140 | 529.83 | 217.37 | 95.10 | |||||||
22\79 | 529.66 | 216.68 | 96.30 | |||||||
27\97 | 529.41 | 215.69 | 98.04 | |||||||
5\18 | 528.32 | 211.33 | 105.66 | Boundary of propriety for fair Mu scale | ||||||
28\101 | 527.275 | 207.14 | 112.99 | |||||||
23\83 | 527.05 | 206.23 | 114.58 | |||||||
41\148 | 526.89 | 205.62 | 115.66 | |||||||
18\65 | 526.695 | 204.83 | 117.04 | |||||||
49\177 | 526.53 | 204.165 | 118.20 | |||||||
31\112 | 526.43 | 203.78 | 118.87 | |||||||
44\159 | 526.53 | 203.35 | 119.62 | |||||||
13\47 | 526.07 | 202.34 | 121.40 | |||||||
47\170 | 525.835 | 201.38 | 123.07 | |||||||
34\123 | 525.74 | 201.02 | 123.70 | |||||||
55\199 | 525.67 | 200.71 | 124.25 | Golden fair Mu scale is near here | ||||||
21\76 | 525.54 | 200.21 | 125.13 | |||||||
50\181 | 525.40 | 199.65 | 126.10 | |||||||
29\105 | 525.30 | 199.25 | 126.80 | |||||||
37\134 | 525.17 | 198.71 | 127.74 | |||||||
8\29 | 524.68 | 196.75 | 131.17 | |||||||
35\127 | 524.16 | 194.69 | 134.78 | |||||||
27\98 | 524.01 | 194.08 | 135.85 | |||||||
46\167 | 523.89 | 193.61 | 136.67 | |||||||
19\69 | 523.73 | 192.95 | 137.82 | |||||||
49\178 | 523.57 | 192.33 | 138.91 | |||||||
30\109 | 523.47 | 191.94 | 139.59 | |||||||
41\149 | 523.37 | 191.47 | 140.41 | |||||||
11\40 | 523.04 | 190.20 | 142.65 | |||||||
36\131 | 522.675 | 188.74 | 145.19 | |||||||
25\91 | 522.515 | 188.105 | 146.30 | |||||||
39\142 | 522.37 | 187.52 | 147.335 | |||||||
14\51 | 522.105 | 186.466 | 149.17 | |||||||
31\113 | 521.78 | 185.15 | 151.48 | |||||||
17\62 | 521.50 | 184.06 | 153.38 | |||||||
20\73 | 521.08 | 182.38 | 156.325 | |||||||
3\11 | 518.715 | 172.905 | Separatrix of fair Sigma and Mu scales | |||||||
19\70 | 516.24 | 190.20 | 163.025 | |||||||
16\59 | 512.78 | 193.42 | 161.18 | |||||||
29\107 | 515.48 | 195.53 | 159.98 | |||||||
13\48 | 515.11 | 198.12 | 158.50 | |||||||
36\133 | 514.815 | 200.21 | 157.305 | |||||||
23\85 | 514.65 | 201.38 | 156.63 | |||||||
33\122 | 514.46 | 202.67 | 155.90 | |||||||
10\37 | 514.04 | 205.62 | 154.21 | |||||||
37\137 | 513.67 | 208.24 | 152.71 | |||||||
27\100 | 513.53 | 209.215 | 152.16 | |||||||
44\163 | 513.41 | 210.03 | 151.69 | |||||||
17\63 | 513.23 | 211.33 | 150.95 | |||||||
41\152 | 513.03 | 212.72 | 150.15 | |||||||
24\89 | 512.89 | 213.70 | 149.59 | |||||||
31\115 | 512.70 | 215.00 | 148.85 | |||||||
7\26 | 512.59 | 219.68 | 146.30 | |||||||
32\119 | 511.45 | 223.76 | 143.845 | |||||||
25\93 | 511.28 | 224.96 | 143.16 | |||||||
43\160 | 511.10 | 225.86 | 142.65 | |||||||
18\67 | 510.97 | 227.10 | 141.94 | |||||||
47\175 | 510.81 | 228.23 | 141.29 | Golden fair Sigma scale is near here | ||||||
29\108 | 510.71 | 228.94 | 140.89 | |||||||
40\149 | 510.59 | 229.77 | 140.41 | |||||||
11\41 | 510.28 | 231.95 | 139.17 | |||||||
37\138 | 509.94 | 234.30 | 137.82 | |||||||
26\97 | 509.80 | 235.29 | 137.25 | |||||||
41\153 | 509.67 | 236.19 | 136.71 | |||||||
15\56 | 509.45 | 237.74 | 135.85 | |||||||
34\127 | 509.185 | 239.62 | 134.78 | |||||||
19\71 | 507.97 | 241.09 | 133.94 | |||||||
23\86 | 506.66 | 243.27 | 132.695 | |||||||
4\15 | 507.19 | 253.59 | 126.80 | Boundary of propriety for fair Sigma scale | ||||||
21\79 | 505.58 | 264.83 | 120.38 | |||||||
17\64 | 505.21 | 267.42 | 118.87 | |||||||
30\113 | 504.94 | 269.30 | 117.82 | |||||||
13\49 | 504.60 | 271.71 | 116.45 | |||||||
35\132 | 504.30 | 273.77 | 115.27 | |||||||
22\83 | 504.13 | 274.98 | 114.58 | |||||||
31\117 | 503.94 | 265.35 | 113.79 | |||||||
9\34 | 503.46 | 279.70 | 111.88 | |||||||
32\121 | 503.00 | 282.935 | 110.03 | |||||||
23\87 | 502.82 | 284.20 | 109.31 | |||||||
37\140 | 502.66 | 285.29 | 108.68 | |||||||
14\53 | 502.40 | 287.09 | 107.66 | |||||||
33\125 | 502.12 | 289.10 | 106.51 | |||||||
19\72 | 501.90 | 290.58 | 105.66 | |||||||
24\91 | 501.615 | 292.61 | 104.50 | |||||||
5\19 | 500.51 | 300.31 | 100.10 | |||||||
21\80 | 499.26 | 309.07 | 95.10 | |||||||
16\61 | 498.87 | 311.80 | 93.54 | |||||||
27\103 | 498.57 | 313.915 | 92.33 | |||||||
11\42 | 498.13 | 316.99 | 90.57 | |||||||
28\107 | 497.71 | 319.955 | 88.88 | |||||||
17\65 | 497.43 | 321.87 | 87.78 | |||||||
23\88 | 497.10 | 324.20 | 86.42 | |||||||
6\23 | 496.16 | 330.775 | 82.69 | |||||||
19\73 | 495.03 | 338.70 | 78.16 | |||||||
13\50 | 494.51 | 342.35 | 76.08 | |||||||
20\77 | 494.01 | 345.81 | 74.10 | |||||||
7\27 | 493.10 | 352.21 | 70.44 | |||||||
15\58 | 491.885 | 360.72 | 65.585 | |||||||
8\31 | 490.83 | 368.12 | 61.35 | |||||||
9\35 | 489.07 | 380.39 | 54.34 | |||||||
1\4 | 475.49 | 0 |