A shruti list

From TD Xenharmonic Wiki
Jump to navigation Jump to search

Original article by ma1937, on the Yahoo tuning forum, is quoted here.

The listing of the srutis of Indian classical music given below is based on decades of study of the srutis, study with several masters of Indian classical music, pitch analysis of recordings by several masters of raga performance, and the following quote by Ali Akbar Khan:

"I am still learning about the srutis. They reach to your heart and help you feel the ragas and the notes. In old theory, they say that there are twenty-two in number, but right now I feel that there are more like twenty-three and a half. There is only one sa and one pa. Komal re, komal ga, and komal dha all have three. Shuddha ma, tivra ma, shuddha dha, and komal ni each have two. And shuddha re, shuddha ga, and shuddha ni each have one and a half."

Ali Akbar Khan

This quotation yields many insights... Below I have just listed the twenty-three and a half srutis he is referring to.

In brief summary, Khansahib's list is basically the usually-given twenty-two srutis plus the three "ati ati komals" (ati ati komal re; ati ati komal ga; and ati ati komal dha). Though not on the usual list of 22 srutis, it is well-known that these notes do appear is some ragas. So really there are twenty-five notes on Khansahib's list. It's reduced to twenty-three and half because he gives "half" status to three notes that are usually considered srutis -- the lesser-used versions of shuddha re, shuddha ga, and shuddha ni. I think this is the most illuminating aspect of his comment.

With each set of srutis associated with a given note, the principal sruti is listed first, the others in descending order of significance. Ratios given are exact. Cent values given are rounded to the nearest whole cent:

Primary functions

Sa (1): [1/1; 000]

komal re (3):

komal re: [16/15; 112]

ati komal re: [256/243; 090]

ati ati komal re: [25/24; 070]

Re (1 1/2):

shuddha re: [9/8; 204]

"half"-status shuddha re: [10/9; 182]

komal ga (3):

komal ga: [6/5; 316]

ati komal ga: [32/27; 294]

ati ati komal ga: [75/64; 274]

Ga (1 1/2):

shuddha ga: [5/4; 386]

"half"-status shuddha ga: [81/64; 408]

(inverse ati ati komal dha: [32/25; 428])

Ma (2):

shuddha Ma: [4/3; 498]

ekasruti Ma: [27/20; 520]

tivra Ma (2 [1 3/4]):

tivra(tar) Ma: [45/32; 590], [729/512; 612]

(these two essentially inverses; maybe not entirely a true priority)

Pa (1): [3/2; 702] (inverse ekasruti Ma: [40/27; 680])

komal dha (3):

komal dha: [8/5; 814]

ati komal dha: [128/81; 792]

ati ati komal dha: [25/16; 772]

Dha (2 [1 3/4]):

shuddha dha: [5/3; 884], [27/16; 906]

(these two hard to prioritize; maybe a toss-up)

(inverse ati ati komal ga: [128/75; 926])

komal ni (2 [1 3/4]):

komal ni: [9/5; 1018], [16/9; 996]

(these two hard to prioritize; maybe a toss-up)

Ni (1 1/2):

shuddha ni: [15/8; 1088]

"half"-status shuddha ni: [243/128; 1110]

(inverse ati ati komal re: [48/25; 1130])

Secondary functions and "artifact shrutis" introduced by using 19 or 22 (out of n) edo to simulate ragas

komal-ardha re (1): [250/243; 48]: 22

ardha komal re (1 3/4), ati ati komal re/ati ati komal re: [27/25; 134], [~64/59; 138], [625/576; 141]: 19*

inverse ati ati komal ga/Pa, komal re/komal re: [256/225; 224]: 22

inverse ekasruti komal ni: [800/729; 160]: 22

komal-ardha ga (1 3/4): [144/125; 246], [125/108; 252]: 19

inverse komal re/tivratar Ma [320/243; 476]

komal ga/komal ga; [36/25; 632]: 19

inverse komal ga/komal ga; [25/18; 568]: 19

ati ati komal ga/ati ati komal ga: [~563/410; 548]: 22

inverse ati ati komal ga/ati ati komal ga: [~820/563; 652]: 22

komal re/tivratar Ma [243/160; 724]

komal-ardha ga (1 3/4): [125/72; 954], [216/125; 948]: 19

ati ati komal ga/Pa, inverse komal re/komal re: [225/128; 976]: 22

ekasruti komal ni: [729/400; 1040]: 22

inverse ardha komal re (1 3/4), inverse ati ati komal re/ati ati komal re: [50/27; 1066], [~59/32; 1062], [1152/625; 1059]: 19*

inverse komal-ardha re (1): [243/125; 1152]: 22

Regular temperaments of the full-status shrutis[edit]

Note: generators in italics will generate a 19 (diatonic) or 22 tone (superdiatonic) set which is too weakly tonal for serious practice

Underlying[edit]

Large-small numbers Status Generator range Midpoint Boundaries of propriety, maximum expressiveness, diatonicity Large step Small step
1L18s "half" 18\19 < g < 1 g = 37\38 g = 19\20, 20\21, 21\22 18g-17 1-g
2L17s full 9\19 < g < 1\2 g = 37\76 g = 10\21, 11\23, 12\25 17g-8 1-2g
3L16s full 6\19 < g < 1\3 g = 37\114 g = 7\22, 8\25, 10\31 16g-5 1-3g
4L15s full 14\19 < g < 3\4 g = 113\152 g = 17\23, 20\27, 23\31 15g-11 3-4g
5L14s full 15\19 < g < 4\5 g = 151\190 g = 19\24, 23\29, 27\34 14g-11 4-5g
6L13s full 3\19 < g < 1\6 g = 37\228 g = 4\25, 5\31, 6/37 13g-2 1-6g
7L12s full 8\19 < g < 3\7 g = 113\266 g = 11\26, 14\33, 17\40 12g-5 3-7g
8L11s full 7\19 < g < 3\8 g = 113\304 g = 10\27, 13\35, 16\43 11g-4 3-8g
9L10s full 2\19 < g < 1\9 g = 37\342 g = 3\28, 4\37, 5\46 10g-1 1-9g
10L9s full 17\19 < g < 9\10 g = 341\380 g = 26\29, 35\39, 44\49 9g-8 9-10g
11L8s full 12\19 < g < 7\11 g = 265\418 g = 19\30, 26\41, 33\52 8g-5 7-11g
12L7s full 11\19 < g < 7\12 g = 265\456 g = 18\31, 25\43, 32\55 7g-4 7-12g
13L6s full 16\19 < g < 11\13 g = 417\494 g = 27\32, 38\45, 49\58 6g-5 11-13g
14L5s full 4\19 < g < 3\14 g = 113\532 g = 7\33, 10\47, 13\61 5g-1 3-14g
15L4s full 5\19 < g < 4\15 g = 151\570 g = 9\34, 13\49, 17\64 4g-1 4-15g
16L3s full 13\19 < g < 11\16 g = 417\608 g = 24\35, 35\51, 46\67 3g-2 11-16g
17L2s full 10\19 < g < 9\17 g = 341\646 g = 19\36, 28\53, 37\70 2g-1 9-17g
18L1s "half" 1\19 < g < 1\18 g = 37\684 g = 2\37, 3\55, 4\73 g 1-18g

Quoted[edit]

Large-small numbers Status Generator range Midpoint Boundaries of propriety, maximum expressiveness, diatonicity Large step Small step
1L21s "half" 21\22 < g < 1 g = 43\44 g = 22\23, 23\24, 24\25 21g-20 1-g
2L20s "3/4" 10\22 < g < 1\2 g = 21\44 g = 11\24, 12\26, 13\28 10g-9\2 1\2-g
3L19s full 7\22 < g < 1\3 g = 43\132 g = 8\25, 9\28, 10\31 19g-6 1-3g
4L18s "3/4" 5\22 < g < 1\4 g = 21\88 g = 6\26, 7\30, 8\34 9g-2 1\2-2g
5L17s full 13\22 < g < 3\5 g = 131\220 g = 16\27, 19\32, 22\37 17g-10 3-5g
6L16s "3/4" 7\22 < g < 2\6 g = 43\132 g = 9\28, 11\34, 13\40 8g-5\2 1-3g
7L15s full 3\22 < g < 1\7 g = 43\308 g = 4\29, 5\36, 6\43 15g-2 1-7g
8L14s "3/4" 8\22 < g < 3\8 g = 65\176 g = 11\30, 14\38, 17\46 7g-5\2 3\2-4g
9L13s full 17\22 < g < 7\9 g = 307\396 g = 24\31, 31\40, 38\49 13g-10 7-9g
10L12s "3/4" 2\22 < g < 1\10 g = 21\220 g = 3\32, 4\42, 5\52 6g-1\2 1\2-5g
11L11s full 1\22 < g < 1\11 g = 3\44 g = 2\33, 3\44, 4\55 g 1\11-g
12L10s "3/4" 9\22 < g < 5\12 g = 109\264 g = 14\34, 19\46, 24\58 5g-2 5\2-6g
13L9s full 5\22 < g < 3\13 g = 131\572 g = 8\35, 11\48, 14\61 9g-2 3-13g
14L8s "3/4" 3\22 < g < 2\14 g = 43\308 g = 5\36, 7\50, 9\64 4g-1\2 1-7g
15L7s full 19\22 < g < 13\15 g = 571\660 g = 32\37, 45\52, 58\67 7g-6 13-15g
16L6s "3/4" 4\22 < g < 3\16 g = 65\352 g = 7\38, 10\54, 13\70 3g-1\2 3\2-8g
17L5s full 9\22 < g < 7\17 g = 207\748 g = 16\39, 23\56, 30\73 5g-2 7-17g
18L4s "3/4" 6\22 < g < 5\18 g = 109\396 g = 11\40, 16\58, 21\76 2g-1\2 5\2-9g
19L3s full 15\22 < g < 13\19 g = 571\836 g = 28\41, 41\60, 54\79 3g-2 13-19g
20L2s "3/4" 1\22 < g < 1\20 g = 21\440 g = 2\42, 3\62, 4\72 g 1\2-10g
21L1s "half" 1\22 < g < 1\21 g = 43\924 g = 2\43, 3\64, 4\85 g 1-21g