A shruti list
Original article by ma1937, on the Yahoo tuning forum, is quoted here.
The listing of the srutis of Indian classical music given below is based on decades of study of the srutis, study with several masters of Indian classical music, pitch analysis of recordings by several masters of raga performance, and the following quote by Ali Akbar Khan:
"I am still learning about the srutis. They reach to your heart and help you feel the ragas and the notes. In old theory, they say that there are twenty-two in number, but right now I feel that there are more like twenty-three and a half. There is only one sa and one pa. Komal re, komal ga, and komal dha all have three. Shuddha ma, tivra ma, shuddha dha, and komal ni each have two. And shuddha re, shuddha ga, and shuddha ni each have one and a half."
Ali Akbar Khan
This quotation yields many insights... Below I have just listed the twenty-three and a half srutis he is referring to.
In brief summary, Khansahib's list is basically the usually-given twenty-two srutis plus the three "ati ati komals" (ati ati komal re; ati ati komal ga; and ati ati komal dha). Though not on the usual list of 22 srutis, it is well-known that these notes do appear is some ragas. So really there are twenty-five notes on Khansahib's list. It's reduced to twenty-three and half because he gives "half" status to three notes that are usually considered srutis -- the lesser-used versions of shuddha re, shuddha ga, and shuddha ni. I think this is the most illuminating aspect of his comment.
With each set of srutis associated with a given note, the principal sruti is listed first, the others in descending order of significance. Ratios given are exact. Cent values given are rounded to the nearest whole cent:
Primary functions
Sa (1): [1/1; 000]
komal re (3):
komal re: [16/15; 112]
ati komal re: [256/243; 090]
ati ati komal re: [25/24; 070]
Re (1 1/2):
shuddha re: [9/8; 204]
"half"-status shuddha re: [10/9; 182]
komal ga (3):
komal ga: [6/5; 316]
ati komal ga: [32/27; 294]
ati ati komal ga: [75/64; 274]
Ga (1 1/2):
shuddha ga: [5/4; 386]
"half"-status shuddha ga: [81/64; 408]
(inverse ati ati komal dha: [32/25; 428])
Ma (2):
shuddha Ma: [4/3; 498]
ekasruti Ma: [27/20; 520]
tivra Ma (2 [1 3/4]):
tivra(tar) Ma: [45/32; 590], [729/512; 612]
(these two essentially inverses; maybe not entirely a true priority)
Pa (1): [3/2; 702] (inverse ekasruti Ma: [40/27; 680])
komal dha (3):
komal dha: [8/5; 814]
ati komal dha: [128/81; 792]
ati ati komal dha: [25/16; 772]
Dha (2 [1 3/4]):
shuddha dha: [5/3; 884], [27/16; 906]
(these two hard to prioritize; maybe a toss-up)
(inverse ati ati komal ga: [128/75; 926])
komal ni (2 [1 3/4]):
komal ni: [9/5; 1018], [16/9; 996]
(these two hard to prioritize; maybe a toss-up)
Ni (1 1/2):
shuddha ni: [15/8; 1088]
"half"-status shuddha ni: [243/128; 1110]
(inverse ati ati komal re: [48/25; 1130])
Secondary functions and "artifact shrutis" introduced by using 19 or 22 (out of n) edo to simulate ragas
komal-ardha re (1): [250/243; 48]: 22
ardha komal re (1 3/4), ati ati komal re/ati ati komal re: [27/25; 134], [~64/59; 138], [625/576; 141]: 19*
inverse ati ati komal ga/Pa, komal re/komal re: [256/225; 224]: 22
inverse ekasruti komal ni: [800/729; 160]: 22
komal-ardha ga (1 3/4): [144/125; 246], [125/108; 252]: 19
inverse komal re/tivratar Ma [320/243; 476]
komal ga/komal ga; [36/25; 632]: 19
inverse komal ga/komal ga; [25/18; 568]: 19
ati ati komal ga/ati ati komal ga: [~563/410; 548]: 22
inverse ati ati komal ga/ati ati komal ga: [~820/563; 652]: 22
komal re/tivratar Ma [243/160; 724]
komal-ardha ga (1 3/4): [125/72; 954], [216/125; 948]: 19
ati ati komal ga/Pa, inverse komal re/komal re: [225/128; 976]: 22
ekasruti komal ni: [729/400; 1040]: 22
inverse ardha komal re (1 3/4), inverse ati ati komal re/ati ati komal re: [50/27; 1066], [~59/32; 1062], [1152/625; 1059]: 19*
inverse komal-ardha re (1): [243/125; 1152]: 22
Regular temperaments of the full-status shrutis[edit]
Note: generators in italics will generate a 19 (diatonic) or 22 tone (superdiatonic) set which is too weakly tonal for serious practice
Underlying[edit]
Large-small numbers | Status | Generator range | Midpoint | Boundaries of propriety, maximum expressiveness, diatonicity | Large step | Small step |
---|---|---|---|---|---|---|
1L18s | "half" | 18\19 < g < 1 | g = 37\38 | g = 19\20, 20\21, 21\22 | 18g-17 | 1-g |
2L17s | full | 9\19 < g < 1\2 | g = 37\76 | g = 10\21, 11\23, 12\25 | 17g-8 | 1-2g |
3L16s | full | 6\19 < g < 1\3 | g = 37\114 | g = 7\22, 8\25, 10\31 | 16g-5 | 1-3g |
4L15s | full | 14\19 < g < 3\4 | g = 113\152 | g = 17\23, 20\27, 23\31 | 15g-11 | 3-4g |
5L14s | full | 15\19 < g < 4\5 | g = 151\190 | g = 19\24, 23\29, 27\34 | 14g-11 | 4-5g |
6L13s | full | 3\19 < g < 1\6 | g = 37\228 | g = 4\25, 5\31, 6/37 | 13g-2 | 1-6g |
7L12s | full | 8\19 < g < 3\7 | g = 113\266 | g = 11\26, 14\33, 17\40 | 12g-5 | 3-7g |
8L11s | full | 7\19 < g < 3\8 | g = 113\304 | g = 10\27, 13\35, 16\43 | 11g-4 | 3-8g |
9L10s | full | 2\19 < g < 1\9 | g = 37\342 | g = 3\28, 4\37, 5\46 | 10g-1 | 1-9g |
10L9s | full | 17\19 < g < 9\10 | g = 341\380 | g = 26\29, 35\39, 44\49 | 9g-8 | 9-10g |
11L8s | full | 12\19 < g < 7\11 | g = 265\418 | g = 19\30, 26\41, 33\52 | 8g-5 | 7-11g |
12L7s | full | 11\19 < g < 7\12 | g = 265\456 | g = 18\31, 25\43, 32\55 | 7g-4 | 7-12g |
13L6s | full | 16\19 < g < 11\13 | g = 417\494 | g = 27\32, 38\45, 49\58 | 6g-5 | 11-13g |
14L5s | full | 4\19 < g < 3\14 | g = 113\532 | g = 7\33, 10\47, 13\61 | 5g-1 | 3-14g |
15L4s | full | 5\19 < g < 4\15 | g = 151\570 | g = 9\34, 13\49, 17\64 | 4g-1 | 4-15g |
16L3s | full | 13\19 < g < 11\16 | g = 417\608 | g = 24\35, 35\51, 46\67 | 3g-2 | 11-16g |
17L2s | full | 10\19 < g < 9\17 | g = 341\646 | g = 19\36, 28\53, 37\70 | 2g-1 | 9-17g |
18L1s | "half" | 1\19 < g < 1\18 | g = 37\684 | g = 2\37, 3\55, 4\73 | g | 1-18g |
Quoted[edit]
Large-small numbers | Status | Generator range | Midpoint | Boundaries of propriety, maximum expressiveness, diatonicity | Large step | Small step |
---|---|---|---|---|---|---|
1L21s | "half" | 21\22 < g < 1 | g = 43\44 | g = 22\23, 23\24, 24\25 | 21g-20 | 1-g |
2L20s | "3/4" | 10\22 < g < 1\2 | g = 21\44 | g = 11\24, 12\26, 13\28 | 10g-9\2 | 1\2-g |
3L19s | full | 7\22 < g < 1\3 | g = 43\132 | g = 8\25, 9\28, 10\31 | 19g-6 | 1-3g |
4L18s | "3/4" | 5\22 < g < 1\4 | g = 21\88 | g = 6\26, 7\30, 8\34 | 9g-2 | 1\2-2g |
5L17s | full | 13\22 < g < 3\5 | g = 131\220 | g = 16\27, 19\32, 22\37 | 17g-10 | 3-5g |
6L16s | "3/4" | 7\22 < g < 2\6 | g = 43\132 | g = 9\28, 11\34, 13\40 | 8g-5\2 | 1-3g |
7L15s | full | 3\22 < g < 1\7 | g = 43\308 | g = 4\29, 5\36, 6\43 | 15g-2 | 1-7g |
8L14s | "3/4" | 8\22 < g < 3\8 | g = 65\176 | g = 11\30, 14\38, 17\46 | 7g-5\2 | 3\2-4g |
9L13s | full | 17\22 < g < 7\9 | g = 307\396 | g = 24\31, 31\40, 38\49 | 13g-10 | 7-9g |
10L12s | "3/4" | 2\22 < g < 1\10 | g = 21\220 | g = 3\32, 4\42, 5\52 | 6g-1\2 | 1\2-5g |
11L11s | full | 1\22 < g < 1\11 | g = 3\44 | g = 2\33, 3\44, 4\55 | g | 1\11-g |
12L10s | "3/4" | 9\22 < g < 5\12 | g = 109\264 | g = 14\34, 19\46, 24\58 | 5g-2 | 5\2-6g |
13L9s | full | 5\22 < g < 3\13 | g = 131\572 | g = 8\35, 11\48, 14\61 | 9g-2 | 3-13g |
14L8s | "3/4" | 3\22 < g < 2\14 | g = 43\308 | g = 5\36, 7\50, 9\64 | 4g-1\2 | 1-7g |
15L7s | full | 19\22 < g < 13\15 | g = 571\660 | g = 32\37, 45\52, 58\67 | 7g-6 | 13-15g |
16L6s | "3/4" | 4\22 < g < 3\16 | g = 65\352 | g = 7\38, 10\54, 13\70 | 3g-1\2 | 3\2-8g |
17L5s | full | 9\22 < g < 7\17 | g = 207\748 | g = 16\39, 23\56, 30\73 | 5g-2 | 7-17g |
18L4s | "3/4" | 6\22 < g < 5\18 | g = 109\396 | g = 11\40, 16\58, 21\76 | 2g-1\2 | 5\2-9g |
19L3s | full | 15\22 < g < 13\19 | g = 571\836 | g = 28\41, 41\60, 54\79 | 3g-2 | 13-19g |
20L2s | "3/4" | 1\22 < g < 1\20 | g = 21\440 | g = 2\42, 3\62, 4\72 | g | 1\2-10g |
21L1s | "half" | 1\22 < g < 1\21 | g = 43\924 | g = 2\43, 3\64, 4\85 | g | 1-21g |