7L 1s
Jump to navigation
Jump to search
There are two notable harmonic entropy minima with this MOS pattern. The first is porcupine, in which two generators make a 6/5 and three make a 4/3. The range of porcupine tunings is about 2\15 to 3\22. Less well-known is greeley, in which two generators are still 6/5 but three fall quite short of a 4/3, but the scale happens to closely approximate a lot of higher-complexity intervals like 10/7, 11/7, etc.
Scales of this form are always proper, because there is only one small step.
Generator | Cents | Scale in EDO steps | Comments | |||||
---|---|---|---|---|---|---|---|---|
1\7 | 171.43 | 1 1 1 1 1 1 1 0 | ||||||
4\29 | 165.52 | 4 4 4 4 4 4 4 1 | L/s = 4 | |||||
163.97 | pi pi pi pi pi pi pi 1 | L/s = pi | ||||||
3\22 | 163.64 | 3 3 3 3 3 3 3 1 | L/s = 3 | |||||
162.87 | e e e e e e e e 1 | L/s = e | ||||||
8\59 | 162,71 | 8 8 8 8 8 8 8 3 | ||||||
13\96 | 162.5 | 13 13 13 13 13 13 13 5 | ||||||
5\37 | 162.16 | 5 5 5 5 5 5 5 2 | Porcupine is in this general region | |||||
7\52 | 161.54 | 7 7 7 7 7 7 7 3 | ||||||
2\15 | 160 | 2 2 2 2 2 2 2 1 | Optimum rank range (L/s=2/1) porcupine | |||||
158.37 | √3 √3 √3 √3 √3 √3 √3 1 | |||||||
5\38 | 157.89 | 5 5 5 5 5 5 5 3 | ||||||
13\99 | 157.58 | 13 13 13 13 13 13 13 8 | Golden porcupine / golden hemikleismic | |||||
8\61 | 157.38 | 8 8 8 8 8 8 8 5 | ||||||
(11\84) | 157.14 | 11 11 11 11 11 11 11 7 pi pi pi pi pi pi pi 2 | ||||||
3\23 | 156.52 | 3 3 3 3 3 3 3 2 | ||||||
10\77 | 155.84 | 10 10 10 10 10 10 10 7 | Greeley is around here | |||||
7\54 | 155.56 | 7 7 7 7 7 7 7 5 | ||||||
4\31 | 154.84 | 4 4 4 4 4 4 4 3 | ||||||
1\8 | 150 | 1 1 1 1 1 1 1 1 |