5L 2s

From TD Xenharmonic Wiki
Jump to navigation Jump to search

5L 2s - "diatonic"[edit]

One way of distinguishing the "diatonic" scale is by considering it a moment of symmetry scale produced by a chain of "fifths". This will include 12edo's diatonic scale along with the Pythagorean diatonic scale and meantone systems, while excluding just intonation scales that use more than one size of "tone".

It may be misleading to call 5L 2s "diatonic," since other scales called diatonic can be arrived at different ways (through just intonation procedures for instance, or with tetrachords). Also, a composer working with a 5L 2s scale may choose to do something very different than typical diatonic music.

substituting step sizes[edit]

The 5L 2s MOS scale has this generalized form.

L L s L L L s

Insert 2 for L and 1 for s and you'll get the 12edo diatonic of standard practice.

2 2 1 2 2 2 1

When L=3, s=1, you have 17edo:

3 3 1 3 3 3 1

When L=3, s=2, you have 19edo:

3 3 2 3 3 3 2

When L=4, s=1, you have 22edo:

4 4 1 4 4 4 1

When L=4, s=3, you have 26edo:

4 4 3 4 4 4 3

When L=5, s=1, you have 27edo:

5 5 1 5 5 5 1

When L=5, s=2, you have 29edo:

5 5 2 5 5 5 2

When L=5, s=3, you have 31edo:

5 5 3 5 5 5 3

When L=5, s=4, you have 33edo:

5 5 4 5 5 5 4

So you have scales where L and s are nearly equal, which approach 7edo:

1 1 1 1 1 1 1

And you have scales where s becomes so small it approaches zero, which would give us 5edo:

1 1 0 1 1 1 0 or 1 1 1 1 1

a continuum of temperaments[edit]

So if 3\7 (three degrees of 7edo) is at one extreme and 2\5 (two degrees of 5edo) is at the other, all other possible 5L 2s scales exist in a continuum between them. You can chop this continuum up by taking "freshman sums" of the two edges - adding together the numerators, then adding together the denominators. Thus, between 3\7 and 2\5 you have (3+2)\(7+5) = 5\12, five degrees of 12edo:

3\7
5\12
2\5

If we carry this freshman-summing out a little further, new, larger edos pop up in our continuum.

generator in cents tetrachord comments
3\7 514.286 1 1 1 239.2945 274.991 307.521 378.193
59\138 513.0435 20 20 19 238.673 274.370 308.142 378.8145
56\131 512.977 19 19 18 238.640 274.337 308.175 378.848
53\124 512.903 18 18 17 238.603 274.300 308.212 378.885
50\117 512.8205 17 17 16 238.562 274.259 308.2535 378.926
47\110 512.727 16 16 15 238.515 274.212 308.300 378.973
44\103 512.621 15 15 14 238.462 274.159 308.353 379.0255
41\96 512.500 14 14 13 238.402 274.098 308.414 379.086
38\89 512.360 13 13 12 238.331 274.028 308.484 379.156
35\82 512.195 12 12 11 238.249 273.946 308.566 379.239
32\75 512.000 11 11 10 238.152 273.848 308.664 379.336
29\68 511.765 10 10 9 238.034 273.731 308.781 379.454
26\61 511.475 9 9 8 237.889 273.586 308.926 379.5985
23\54 511.111 8 8 7 237.707 273.404 309.108 379.781
20\47 510.638 7 7 6 237.471 273.168 309.345 380.017
17\40 510.000 6 6 5 237.152 272.848 309.664 380.336
14\33 509.091 5 5 4 236.697 272.394 310.118 380.791
25\59 508.475 9 9 7 236.389 272.086 310.4265 381.0985
11\26 507.692 4 4 3 235.998 271.695 310.817 381.491
30\71 507.042 11 11 8 235.672 271.3695 311.142 381.846
19\45 506.667 7 7 5 235.485 271.182 311.33 382.003
27\64 506.250 10 10 7 235.277 270.973 311.539 382.211
8\19 505.263 3 3 2 234.783 270.480 312.032 382.705 Optimum rank range (L/s=3/2) diatonic
37\88 504.5455 14 14 9 234.424 270.121 312.391 383.0635 LucyTuning
504.356 pi pi 2 234.329 270.026 312.486 383.158
29\69 504.348 11 11 7 234.3255 270.022 312.490 383.172
21\50 504.000 8 8 5 234.152 269.848 312.664 383.336
55\131 503.817 21 21 13 234.060 269.757 312.755 383.428
144\343 503.790 55 55 34 234.047 269.743 312.769 383.441
233\555 503.784 89 89 55 234.0435 269.740 312.772 383.444 Golden meantone
89\212 503.774 34 34 21 234.038 269.735 312.777 383.449
34\81 503.704 13 13 8 234.003 269.700 312.811 383.485
13\31 503.226 5 5 3 233.7645 269.461 313.051 383.723 Meantone is in this region
31\74 502.703 12 12 7 233.503 269.200 313.312 383.985
502.5135 √3 √3 1 233.408 269.105 313.407 384.079
18\43 502.326 7 7 4 233.314 269.011 313.501 384.183
23\55 501.818 9 9 5 233.061 268.7575 313.754 384.428
5\12 500.000 2 2 1 232.152 267.848 314.664 385.336 Boundary of propriety

(generators larger than this are proper)

42\101 499.010 17 17 8 231.6565 267.353 315.159 385.831
37\89 498.876 15 15 7 231.590 267.287 315,226 385.898
32\77 498.701 13 13 6 231.502 267.199 315.313 385.986
27\65 498.4615 11 11 5 231.382 267.079 315.433 386.105
22\53 498.113 9 9 4 231.208 266.905 315.609 386.278 Pythagorean is around here
17\41 497.591 7 7 3 230.932 266.629 315.883 386.556
29\70 497.143 12 12 5 230.723 266.420 316.092 386.765
12\29 496.552 5 5 2 230.4275 266.124 316.388 387.061
31\75 496.000 13 13 5 230.152 265.848 316.664 387.336
81\196 495.918 34 34 13 230.111 265.808 316.705 387.377
131\317 495.899 55 55 21 230.101 265.798 316.714 387.387
50\121 495.868 21 21 8 230.0855 265.782 316.73 387.402
19\46 495.652 8 8 3 229.978 265.6745 316.837 387.511
495.393 e e 1 229.848 265.545 316.967 387.639 L/s = e
26\63 495.238 11 11 4 229.771 265.4675 317.045 387.717

7\17 494.118 3 3 1 229.210 264.907 317.596 388.286 L/s = 3
493.553 pi pi 1 228.928 264.625 317.887 388.56 L/s = pi
23\56 492.857 10 10 3 228.580 264.277 318.235 388.908
16\39 492.308 7 7 2 228.305 264.002 318.51 389.182
25\61 491.803 11 11 3 228.053 263.750 318.761 389.436
9\22 490.909 4 4 1 227.606 263.303 319.209 389.882 (No-5's) superpyth is in this region

L/s = 4

20\49 489.796 9 9 2 227.050 262.746 319.766 390.438
11\27 488.889 5 5 1 226.596 262.293 320.219 390.892
13\32 487.500 6 6 1 225.9015 261.598 320.914 391.596
15\37 486.4865 7 7 1 225.395 261.092 321.4205 392.093
17\42 485.714 8 8 1 225.009 260.7055 321.807 392.479
19\47 485.106 9 9 1 224.705 260.402 322.111 392.783
21\52 484.615 10 10 1 224.459 260.156 322.356 393.0285
23\57 484.2105 11 11 1 224.257 259.954 322.5585 393.231
25\62 483.871 12 12 1 224.087 259.784 322.728 393.401
27\67 483.582 13 13 1 223.943 259.6395 322.873 393.545
29\72 483.333 14 14 1 223.818 259.515 322.997 393.6695
31\77 483.117 15 15 1 223.710 259.407 323.105 393.778
33\82 482.927 16 16 1 223.615 259.312 323.200 393.873
35\87 482.759 17 17 1 223.531 259.228 323.2845 393.957
37\92 482.609 18 18 1 223.456 259.153 323.539 394.032
39\97 482.474 19 19 1 223.389 259.0855 323.427 394.099
41\102 482.353 20 20 1 223.328 259.025 323.487 394.160
43\107 482.243 21 21 1 223.273 258.970 323.542 394.215
45\112 482.143 22 22 1 223.223 258.920 323.592 394.265
47\117 482.051 23 23 1 223.177 258.874 323.638 394.311
49\122 481.967 24 24 1 223.135 258.832 322.680 394.353
2\5 480.000 1 1 0 222.152 257.848 324.664 395.336

Temperaments above 5\12 on this chart are called "negative temperaments" (as they lessen the size of the fifth) and include meantone systems such as 1/3-comma (close to 8\19) and 1/4-comma (close to 13\31). As these tunings approach 3\7, the majors become flatter and the minors become sharper.

Temperaments below 5\12 on this chart are called "positive temperaments" and they include Pythagorean tuning itself (well approximated by 22\53) as well as superpyth temperaments such as 7\17 and 9\22. As these tunings approach 2\5, the majors become sharper and the minors become flatter. Around 9\22, the thirds fall closer to 7-limit than 5-limit intervals: 7:6 and 9:7 as opposed to 6:5 and 5:4.

5L2s.jpg

5L 2s contains the pentatonic MOS 2L 3s and (with the sole exception of the 5L 2s of 12edo) is itself contained in a dodecaphonic MOS: either 7L 5s or 5L 7s.