52edt

From TD Xenharmonic Wiki
Jump to navigation Jump to search

The 52 equal division of 3, the tritave, divides it into 52 equal parts of 36.576 cents each, corresponding to 32.808 edo. It is something of a curiosity as it really needs to be considered as a 29-limit no-twos system. While not super-accurate, it gets the entire no-twos 29-limit to within 18 cents. It is distinctly flat, in the sense that 5, 7, 11, 13, 17, 19, 23 and 29 are all flat, so using something other than pure-threes tuning might be advisable. It is contorted in the 11-limit, so that it tempers out the same commas as 26edt in the 11-limit and 13edt in the 7-limit. Other commas it tempers out includes 121/119, 209/207, 247/245, 275/273, 299/297, 325/323, 345/343, 363/361, 377/375, 437/435, 495/493, 627/625, 665/663, 667/665, 847/845, 1127/1125, 1311/1309 and 1617/1615. It is the eleventh no-twos zeta peak edt.

Intervals[edit]

Steps Cents BP nonatonic degree Diatonic degree Corresponding JI intervals Comments Generator for...
1 36.6 Qa1/3d2 Sa1 50/49~33/32~49/48
2 73.15 Sa1/sd2 A1/dd2 25/24~28/27~22/21~27/26~24/23~21/20~29/28
3 109.7 3A1/qd2 A+1/d-2 15/14~16/15~29/27~121/112
4 146.3 A1/m2 AA1/sm2 27/25~25/23~49/45~13/12~14/13~11/10~169/162
5 182.9 Sm2 sm+2 10/9
6 219.5 N2 m2 9/8~8/7~44/39
7 256.0 sM2 N2 147/128~7/6
8 292.6 M2/d3 M2 32/27~25/21~13/11~27/23
9 329.2 Qa2/3d3 SM-2/d-2 6/5 11/9-
10 365.8 Sa2/sd3 SM2/dd3 5/4~16/13 11/9+
11 402.3 3A3/qd3 SM+2 81/64~63/50~33/26~23/18
12 438.9 A2/P3/d4 AA2/sm3 32/25~9/7~14/11~104/81~13/10
13 475.5 Qa3/3d4 sm+3 21/16~98/75
14 512.1 Sa3/sd4 m3 4/3~27/20~162/121
15 548.6 3A3/qd4 N3 11/8~243/169 18/13-
16 585.2 A3/m4/d5 M3 7/5~25/18~112/81~88/63~32/23~29/21 18/13+
17 621.8 Sm4/3d5 SM-3 10/7~36/25~81/56~63/44~23/16~42/29 13/9-
18 658.4 N4/sd5 SM3/dd4 16/11~338/243 13/9+
19 694.95 sM4/qd5 SM+3/d-4 3/2~40/27~121/81
20 731.5 M4/m5 AA3/d4 32/21~75/49
21 768.1 Qa4/Sm5 d+4 25/16~14/9~11/7~81/52
22 804.7 Sa4/N5 P4 8/5~36/23
23 841.25 3A4/sM5 A-4 13/8
24 877.8 A4/M5/d6 A4 5/3
25 914.4 Qa5/3d6 A+4 27/16~42/25~22/13~46/27
26 951.0 Sa5/sd6 AA4/dd5 125/72
27 987.55 3A5/qd6 d-5 16/9~8/7~39/22~75/46
28 1024.1 A5/m6/d7 d5 9/5
29 1060.7 Sm6/3d7 d+5 50/27~46/25~90/49~24/13~13/7~20/11
30 1097.3 N6/sd7 P5 15/8
31 1133.9 sM6/qd7 A-5 48/25~27/14~21/11~52/27~23/12~40/21~56/29
32 1170.4 M6/m7 A5/dd6 49/25~64/33~96/49
33 1207.0 Qa6/Sm7 A+5 2/1
34 1243.6 Sa6/N7 AA5/sm6 33/16~100/49~49/24~729/338
35 1280.2 3A6/sM7 sm+6 25/12~56/27~44/21~27/13
36 1316.7 A6/M7/d8 m6 15/7~32/15~58/27
37 1353.3 Qa7/3d8 N6 54/25~50/23~98/45~13/6~169/81
38 1389.9 Sa7/sd8 M6 20/9
39 1426.5 3A7/qd8 SM-6 9/4~16/7
40 1463.0 A7/P8/d9 SM6/dd7 147/64~7/3
41 1499.6 Qa8/3d9 SM+6/sm-7 64/27~50/21~26/11~81/23
42 1536.2 Sa8/sd9 AA6/sm7 12/5 22/9-
43 1572.7 3A8/qd9 sm-7 5/2~32/13 22/9+
44 1609.3 A8/m9 m7 81/32~63/25~33/13~23/9
45 1645.9 Sm9 N7 64/45~18/7~28/11~208/81~13/5
46 1682.5 N9 M7 21/8~196/75
47 1719.1 sM9 SM-7 8/3~27/10
48 1755.65 M9/d10 SM7/dd8 69/25~135/49 36/13-
49 1792.2 Qa9/3d10 SM+7/d-8 14/5~25/9~224/81~176/63~64/23~58/21 36/13+
50 1828.8 Sa9/sd10 A7/d8 20/7~72/25~81/28~63/22~23/8~84/29 26/9-
51 1865.4 3A9/qd10 P-8 147/50~32/11~338/81~144/49 26/9+
52 1902.0 A9/P10 P8 3/1 Tritave

It is a weird coincidence how 52edt intones any 52edo intervals within plus or minus 6.5 cents when it is supposed to have nothing to do with this other tuning:

52edt 52edo Discrepancy
365.761 369.231 -3.47
512.065 507.692 +4.373
877.825 876.923 +0.902
1243.586 1246.154 -2.168
1389.89 1384.615 +5.275
1755.651 1753.846 +1.805
2121.411 2123.077 -1.666
2633.476 2630.769 +2.647

…and so on

It's not actually a coincidence. It is simply a demonstration of rational approximations to log₂(3). In this table are shown 16/10, 22/14, 38/24, 54/34, 60/38, 76/48, 92/58, 114/72.